8,789 research outputs found

    Prenatal exposure to selective serotonin reuptake inhibitors and childhood overweight at 7 years of age

    Get PDF
    Abstract not availableLuke E. Grzeskowiak, Andrew L. Gilbert, Thorkild I. A. SĂžrensen, JĂžrn Olsen, Henrik T. SĂžrensen, Lars H. Pedersen, Janna L. Morriso

    On the single mode approximation in spinor-1 atomic condensate

    Full text link
    We investigate the validity conditions of the single mode approximation (SMA) in spinor-1 atomic condensate when effects due to residual magnetic fields are negligible. For atomic interactions of the ferromagnetic type, the SMA is shown to be exact, with a mode function different from what is commonly used. However, the quantitative deviation is small under current experimental conditions (for 87^{87}Rb atoms). For anti-ferromagnetic interactions, we find that the SMA becomes invalid in general. The differences among the mean field mode functions for the three spin components are shown to depend strongly on the system magnetization. Our results can be important for studies of beyond mean field quantum correlations, such as fragmentation, spin squeezing, and multi-partite entanglement.Comment: Revised, newly found analytic proof adde

    Ultra-large bandwidth hollow-core guiding in all-silica Bragg fibers with nano-supports

    Get PDF
    We demonstrate a new class of hollow-core Bragg fibers that are composed of concentric cylindrical silica rings separated by nanoscale support bridges. We theoretically predict and experimentally observe hollow-core confinement over an octave frequency range. The bandwidth of bandgap guiding in this new class of Bragg fibers exceeds that of other hollow-core fibers reported in the literature. With only three rings of silica cladding layers, these Bragg fibers achieve propagation loss of the order of 1 dB/m.Comment: 9 pages including 5 figure

    Divergence-type 2+1 dissipative hydrodynamics applied to heavy-ion collisions

    Full text link
    We apply divergence-type theory (DTT) dissipative hydrodynamics to study the 2+1 space-time evolution of the fireball created in Au+Au relativistic heavy-ion collisions at sNN=\sqrt{s_{NN}}=200 GeV. DTTs are exact hydrodynamic theories that do no rely on velocity gradient expansions and therefore go beyond second-order theories. We numerically solve the equations of motion of the DTT for Glauber initial conditions and compare the results with those of second-order theory based on conformal invariants (BRSS) and with data. We find that the charged-hadron minumum-bias elliptic flow reaches its maximum value at lower pTp_T in the DTT, and that the DTT allows for a value of η/s\eta/s slightly larger than that of the BRSS. Our results show that the differences between viscous hydrodynamic formalisms are a significant source of uncertainty in the precise extraction of η/s\eta/s from experiments.Comment: v4: 29 pages, 12 figures, minor changes. Final version as published in Phys. Rev.

    Electronic Structure of Atoms in Magnetic Quadrupole Traps

    Full text link
    We investigate the electronic structure and properties of atoms exposed to a magnetic quadrupole field. The spin-spatial as well as generalized time reversal symmetries are established and shown to lead to a two-fold degeneracy of the electronic states in the presence of the field. Low-lying as well as highly excited Rydberg states are computed and analyzed for a broad regime of field gradients. The delicate interplay between the Coulomb and various magnetic interactions leads to complex patterns of the spatial spin polarization of individual excited states. Electromagnetic transitions in the quadrupole field are studied in detail thereby providing the selection rules and in particular the transition wavelengths and corresponding dipole strengths. The peculiar property that the quadrupole magnetic field induces permanent electric dipole moments of the atoms is derived and discussed.Comment: 17 pages, 13 figures, accepted for publication in PR

    A generative angular model of protein structure evolution

    Get PDF
    Recently described stochastic models of protein evolution have demonstrated that the inclusion of structural information in addition to amino acid sequences leads to a more reliable estimation of evolutionary parameters. We present a generative, evolutionary model of protein structure and sequence that is valid on a local length scale. The model concerns the local dependencies between sequence and structure evolution in a pair of homologous proteins. The evolutionary trajectory between the two structures in the protein pair is treated as a random walk in dihedral angle space, which is modeled using a novel angular diffusion process on the two-dimensional torus. Coupling sequence and structure evolution in our model allows for modeling both “smooth” conformational changes and “catastrophic” conformational jumps, conditioned on the amino acid changes. The model has interpretable parameters and is comparatively more realistic than previous stochastic models, providing new insights into the relationship between sequence and structure evolution. For example, using the trained model we were able to identify an apparent sequence–structure evolutionary motif present in a large number of homologous protein pairs. The generative nature of our model enables us to evaluate its validity and its ability to simulate aspects of protein evolution conditioned on an amino acid sequence, a related amino acid sequence, a related structure or any combination thereof
    • 

    corecore