378 research outputs found

    Smart magnetic nanovesicles for theranostic application: Preparation and characterization

    Get PDF
    Nanomedicines are submicrometer-sized carrier materials designed to improve the biodistribution of systemically administered (chemo)therapeutic agents. By delivering pharmacologically active agents more effectively and more selectively to the pathological site nanomedicines aim to improve the balance between the efficacy and the toxicity of systemic (chemo)therapeutic administrations. Nanomedicine formulations have also been used for imaging applications and, in recent years, for theranostic approaches, that is, for systems and strategies in which disease diagnosis and therapy are combined. On the one hand, “classical” drug delivery systems are being co-loaded with both drugs and contrast agents. Actually, nanomaterials with an intrinsic ability to be used for imaging purposes, such as iron-oxide–based magnetic nanoparticles (MNPs), are increasingly being loaded with drugs or alone for combining disease diagnosis and therapy. In this study, non-ionic surfactant vesicles loaded with lipophilic and hydrophilic MNPs have been prepared. Vesicles have been characterized in terms of dimensions, ζ-potential, time stability, bilayer characteristics and overall iron content. The encouraging obtained results confirm that Tween 20 and Span 20 vesicles could be promising carriers for the delivery of hydrophilic and lipophilic MNPs, respectively, thereby prompting various opportunities for the development of suitable theranostic strategies. The analyzed formulations confirm the importance of surfactant chemical-physical characteristics in entrapping the MNPs of different polarity, highlighting the high versatility of niosomal bilayer and structure; property that make them so appealing among drug delivery nanocarriers

    In Vitro Evaluation of Antiviral Activities of Funicone-like Compounds Vermistatin and Penisimplicissin against Canine Coronavirus Infection

    Get PDF
    Recent studies have demonstrated that 3-O-methylfunicone (OMF), a fungal secondary metabolite from Talaromyces pinophilus belonging to the class of funicone-like compounds, has antiviral activity against canine coronaviruses (CCoV), which causes enteritis in dogs. Herein, we selected two additional funicone-like compounds named vermistatin (VER) and penisimplicissin (PS) and investigated their inhibitory activity towards CCoV infection. Thus, both compounds have been tested for their cytotoxicity and for antiviral activity against CCoV in A72 cells, a fibrosarcoma cell line suitable for investigating CCoV. Our findings showed an increase in cell viability, with an improvement of morphological features in CCoV-infected cells at the non-toxic doses of 1 ÎŒM for VER and 0.5 ÎŒM for PS. In addition, we observed that these compounds caused a strong inhibition in the expression of the aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor which is activated during CCoV infection. Our results also showed the alkalinization of lysosomes in the presence of VER or PS, which may be involved in the observed antiviral activities

    Bulk gravitons from a cosmological brane

    Full text link
    We investigate the emission of gravitons by a cosmological brane into an Anti de Sitter five-dimensional bulk spacetime. We focus on the distribution of gravitons in the bulk and the associated production of `dark radiation' in this process. In order to evaluate precisely the amount of dark radiation in the late low-energy regime, corresponding to standard cosmology, we study numerically the emission, propagation and bouncing off the brane of bulk gravitons.Comment: 27 pages, 5 figures, minor corrections. Final versio

    The Effectiveness of Cyrene as a Solvent in Exfoliating 2D TMDs Nanosheets

    Get PDF
    The pursuit of environmentally friendly solvents has become an essential research topic in sustainable chemistry and nanomaterial science. With the need to substitute toxic solvents in nanofabrication processes becoming more pressing, the search for alternative solvents has taken on a crucial role in this field. Additionally, the use of toxic, non-economical organic solvents, such as N-methyl-2 pyrrolidone and dimethylformamide, is not suitable for all biomedical applications, even though these solvents are often considered as the best exfoliating agents for nanomaterial fabrication. In this context, the success of producing two-dimensional transition metal dichalcogenides (2D TMDs), such as MoS2 and WS2, with excellent captivating properties is due to the ease of synthesis based on environment-friendly, benign methods with fewer toxic chemicals involved. Herein, we report for the first time on the use of cyrene as an exfoliating agent to fabricate monolayer and few-layered 2D TMDs with a versatile, less time-consuming liquid-phase exfoliation technique. This bio-derived, aprotic, green and eco-friendly solvent produced a stable, surfactant-free, concentrated 2D TMD dispersion with very interesting features, as characterized by UV–visible and Raman spectroscopies. The surface charge and morphology of the fabricated nanoflakes were analyzed using ς-potential and scanning electron microscopy. The study demonstrates that cyrene is a promising green solvent for the exfoliation of 2D TMD nanosheets with potential advantages over traditional organic solvents. The ability to produce smaller-sized—especially in the case of WS2 as compared to MoS2—and mono/few-layered nanostructures with higher negative surface charge values makes cyrene a promising candidate for various biomedical and electronic applications. Overall, the study contributes to the development of sustainable and environmentally friendly methods for the production of 2D nanomaterials for various applications

    Signatures of quantum effects on radiation reaction in laser-electron-beam collisions

    Get PDF
    Two signatures of quantum effects on radiation reaction in the collision of a GeV electron beam with a high intensity (>3×1020Wcm-2]]>) laser pulse have been considered. We show that the decrease in the average energy of the electron beam may be used to measure the Gaunt factor for synchrotron emission. We derive an equation for the evolution of the variance in the energy of the electron beam in the quantum regime, i.e. quantum efficiency parameter . We show that the evolution of the variance may be used as a direct measure of the quantum stochasticity of the radiation reaction and determine the parameter regime where this is observable. For example, stochastic emission results in a 25% increase in the standard deviation of the energy spectrum of a GeV electron beam, 1 fs after it collides with a laser pulse of intensity 1021W cm-2. This effect should therefore be measurable using current high-intensity laser systems

    Cosmology of a brane radiating gravitons into the extra dimension

    Full text link
    We study in a self-consistent way the impact of the emission of bulk gravitons on the (homogeneous) cosmology of a three-brane embedded in a five-dimensional spacetime. In the low energy regime, we recover the well known result that the bulk affects the Friedmann equation only via a radiation-like term \C/a^4, called dark or Weyl radiation. By contrast, in the high energy regime, we find that the Weyl parameter \C is no longer constant but instead grows very rapidly as \C\propto a^4. As a consequence, the value of \C today is not a free parameter as usually considered but is a fixed number, which, generically, depends only on the number of relativistic degrees of freedom at the high/low energy transition. Our estimated amount of Weyl radiation satisfies the present nucleosynthesis bounds.Comment: 12 page

    Electron spin polarization in realistic trajectories around the magnetic node of two counter-propagating, circularly polarized, ultra-intense lasers

    Get PDF
    It has recently been suggested that two counter-propagating, circularly polarized, ultra-intense lasers can induce a strong electron spin polarization at the magnetic node of the electromagnetic field that they setup (Del Sorbo et al 2017 Phys. Rev. A 96 043407). We confirm these results by considering a more sophisticated description that integrates over realistic trajectories. The electron dynamics is weakly affected by the variation of power radiated due to the spin polarization. The degree of spin polarization differs by approximately 5% if considering electrons initially at rest or already in a circular orbit. The instability of trajectories at the magnetic node induces a spin precession associated with the electron migration that establishes an upper temporal limit to the polarization of the electron population of about one laser period

    Efficient ion acceleration and dense electron-positron plasma creation in ultra-high intensity laser-solid interactions

    Get PDF
    The radiation pressure of next generation ultra-high intensity (>1023>10^{23} W/cm2^{2}) lasers could efficiently accelerate ions to GeV energies. However, nonlinear quantum-electrodynamic effects play an important role in the interaction of these laser pulses with matter. Here we show that these effects may lead to the production of an extremely dense (∌1024\sim10^{24} cm−3^{-3}) pair-plasma which absorbs the laser pulse consequently reducing the accelerated ion energy and energy conversion efficiency by up to 30-50\%

    Dynamical Lorentz simmetry breaking from 3+1 Axion-Wess-Zumino model

    Get PDF
    We study the renormalizable abelian vector-field models in the presence of the Wess-Zumino interaction with the pseudoscalar matter. The renormalizability is achieved by supplementing the standard kinetic term of vector fields with higher derivatives. The appearance of fourth power of momentum in the vector-field propagator leads to the super-renormalizable theory in which the ÎČ\beta-function, the vector-field renormalization constant and the anomalous mass dimension are calculated exactly. It is shown that this model has the infrared stable fixed point and its low-energy limit is non-trivial. The modified effective potential for the pseudoscalar matter leads to the possible occurrence of dynamical breaking of the Lorentz symmetry. This phenomenon is related to the modification of Electrodynamics by means of the Chern-Simons (CS) interaction polarized along a constant CS vector. Its presence makes the vacuum optically active that has been recently estimated from astrophysical data. We examine two possibilities for the CS vector to be time-like or space-like, under the assumption that it originates from v.e.v. of some pseudoscalar matter and show that only the latter one is consistent in the framework of the AWZ model, because a time-like CS vector makes the vacuum unstable under pairs creation of tachyonic photon modes with the finite vacuum decay rate.Comment: 33 pages, no Figures, Plain TeX, submitted to Phys. Rev.
    • 

    corecore