478 research outputs found

    Experimental demonstration of coupled optical springs

    Get PDF
    Optical rigidity will play an important role in improving the sensitivity of future generations of gravitational wave (GW) interferometers, which employ high laser power in order to reach and exceed the standard quantum limit. Several experiments have demonstrated the combined effect of two optical springs on a single system for very low-weight mirror masses or membranes. In this paper we investigate the complex interactions between multiple optical springs and the surrounding apparatus in a system of comparable dynamics to a large-scale GW detector. Using three 100 g mirrors to form a coupled cavity system capable of sustaining two or more optical springs, we demonstrate a number of different regimes of opto-mechanical rigidity and measurement techniques. Our measurements reveal couplings between each optical spring and the control loops that can affect both the achievable increase in sensitivity and the stability of the system. Hence this work establishes a better understanding of the realisation of these techniques and paves the way to their application in future GW observatories, such as upgrades to Advanced LIGO

    Experimental test of higher-order Laguerre–Gauss modes in the 10 m Glasgow prototype interferometer

    Get PDF
    Brownian noise of dielectric mirror coatings is expected to be one of the limiting noise sources, at the peak sensitivity, of next generation ground based interferometric gravitational wave (GW) detectors. The use of higher-order Laguerre–Gauss (LG) beams has been suggested to reduce the effect of coating thermal noise in future generations of gravitational wave detectors. In this paper we describe the first test of interferometry with higher-order LG beams in an environment similar to a full-scale gravitational wave detector. We compare the interferometric performance of higher-order LG modes and the fundamental mode beams, injected into a 10 m long suspended cavity that features a finesse of 612, a value chosen to be typical of future gravitational wave detectors. We found that the expected mode degeneracy of the injected LG3, 3 beam was resolved into a multiple peak structure, and that the cavity length control signal featured several nearby zero crossings. The break up of the mode degeneracy is due to an astigmatism (defined as |Rcy − Rcx|) of 5.25 ± 0.5 cm on one of our cavity mirrors with a radius of curvature (Rc) of 15 m. This observation agrees well with numerical simulations developed with the FINESSE software. We also report on how these higher-order mode beams respond to the misalignment and mode mismatch present in our 10 m cavity. In general we found the LG3, 3 beam to be considerably more susceptible to astigmatism and mode mismatch than a conventional fundamental mode beam. Therefore the potential application of higher-order Laguerre–Gauss beams in future gravitational wave detectors will impose much more stringent requirements on both mode matching and mirror astigmatism

    Design of a speed meter interferometer proof-of-principle experiment

    Get PDF
    The second generation of large scale interferometric gravitational wave detectors will be limited by quantum noise over a wide frequency range in their detection band. Further sensitivity improvements for future upgrades or new detectors beyond the second generation motivate the development of measurement schemes to mitigate the impact of quantum noise in these instruments. Two strands of development are being pursued to reach this goal, focusing both on modifications of the well-established Michelson detector configuration and development of different detector topologies. In this paper, we present the design of the world's first Sagnac speed meter interferometer which is currently being constructed at the University of Glasgow. With this proof-of-principle experiment we aim to demonstrate the theoretically predicted lower quantum noise in a Sagnac interferometer compared to an equivalent Michelson interferometer, to qualify Sagnac speed meters for further research towards an implementation in a future generation large scale gravitational wave detector, such as the planned Einstein Telescope observatory.Comment: Revised version: 16 pages, 6 figure

    GEO 600 and the GEO-HF upgrade program: successes and challenges

    Get PDF
    The German-British laser-interferometric gravitational wave detector GEO 600 is in its 14th year of operation since its first lock in 2001. After GEO 600 participated in science runs with other first-generation detectors, a program known as GEO-HF began in 2009. The goal was to improve the detector sensitivity at high frequencies, around 1 kHz and above, with technologically advanced yet minimally invasive upgrades. Simultaneously, the detector would record science quality data in between commissioning activities. As of early 2014, all of the planned upgrades have been carried out and sensitivity improvements of up to a factor of four at the high-frequency end of the observation band have been achieved. Besides science data collection, an experimental program is ongoing with the goal to further improve the sensitivity and evaluate future detector technologies. We summarize the results of the GEO-HF program to date and discuss its successes and challenges

    Cost-benefit analysis for commissioning decisions in GEO600

    Get PDF
    Gravitational wave interferometers are complex instruments, requiring years of commissioning to achieve the required sensitivities for the detection of gravitational waves, of order 10^-21 in dimensionless detector strain, in the tens of Hz to several kHz frequency band. Investigations carried out by the GEO600 detector characterisation group have shown that detector characterisation techniques are useful when planning for commissioning work. At the time of writing, GEO600 is the only large scale laser interferometer currently in operation running with a high duty factor, 70%, limited chiefly by the time spent commissioning the detector. The number of observable gravitational wave sources scales as the product of the volume of space to which the detector is sensitive and the observation time, so the goal of commissioning is to improve the detector sensitivity with the least possible detector down time. We demonstrate a method for increasing the number of sources observable by such a detector, by assessing the severity of non-astrophysical noise contaminations to efficiently guide commissioning. This method will be particularly useful in the early stages and during the initial science runs of the aLIGO and adVirgo detectors, as they are brought up to design performance.Comment: 17 pages, 17 figures, 2 table

    Control of a velocity-sensitive audio-band quantum non-demolition interferometer

    Get PDF
    The Sagnac speed meter interferometer topology can potentially provide enhanced sensitivity to gravitational waves in the audio-band compared to equivalent Michelson interferometers. A challenge with the Sagnac speed meter interferometer arises from the intrinsic lack of sensitivity at low frequencies where the velocity-proportional signal is smaller than the noise associated with the sensing of the signal. Using as an example the on-going proof-of-concept Sagnac speed meter experiment in Glasgow, we quantify the problem and present a solution involving the extraction of a small displacement-proportional signal. This displacement signal can be combined with the existing velocity signal to enhance low frequency sensitivity, and we derive optimal filters to accomplish this for different signal strengths. We show that the extraction of the displacement signal for low frequency control purposes can be performed without reducing significantly the quantum non-demolition character of this type of interferometer

    The next detectors for gravitational wave astronomy

    Full text link
    This paper focuses on the next detectors for gravitational wave astronomy which will be required after the current ground based detectors have completed their initial observations, and probably achieved the first direct detection of gravitational waves. The next detectors will need to have greater sensitivity, while also enabling the world array of detectors to have improved angular resolution to allow localisation of signal sources. Sect. 1 of this paper begins by reviewing proposals for the next ground based detectors, and presents an analysis of the sensitivity of an 8 km armlength detector, which is proposed as a safe and cost-effective means to attain a 4-fold improvement in sensitivity. The scientific benefits of creating a pair of such detectors in China and Australia is emphasised. Sect. 2 of this paper discusses the high performance suspension systems for test masses that will be an essential component for future detectors, while sect. 3 discusses solutions to the problem of Newtonian noise which arise from fluctuations in gravity gradient forces acting on test masses. Such gravitational perturbations cannot be shielded, and set limits to low frequency sensitivity unless measured and suppressed. Sects. 4 and 5 address critical operational technologies that will be ongoing issues in future detectors. Sect. 4 addresses the design of thermal compensation systems needed in all high optical power interferometers operating at room temperature. Parametric instability control is addressed in sect. 5. Only recently proven to occur in Advanced LIGO, parametric instability phenomenon brings both risks and opportunities for future detectors. The path to future enhancements of detectors will come from quantum measurement technologies. Sect. 6 focuses on the use of optomechanical devices for obtaining enhanced sensitivity, while sect. 7 reviews a range of quantum measurement options

    First LIGO search for gravitational wave bursts from cosmic (super)strings

    Get PDF
    We report on a matched-filter search for gravitational wave bursts from cosmic string cusps using LIGO data from the fourth science run (S4) which took place in February and March 2005. No gravitational waves were detected in 14.9 days of data from times when all three LIGO detectors were operating. We interpret the result in terms of a frequentist upper limit on the rate of gravitational wave bursts and use the limits on the rate to constrain the parameter space (string tension, reconnection probability, and loop sizes) of cosmic string models.Comment: 11 pages, 3 figures. Replaced with version submitted to PR

    All-sky LIGO Search for Periodic Gravitational Waves in the Early S5 Data

    Get PDF
    We report on an all-sky search with the LIGO detectors for periodic gravitational waves in the frequency range 50--1100 Hz and with the frequency's time derivative in the range -5.0E-9 Hz/s to zero. Data from the first eight months of the fifth LIGO science run (S5) have been used in this search, which is based on a semi-coherent method (PowerFlux) of summing strain power. Observing no evidence of periodic gravitational radiation, we report 95% confidence-level upper limits on radiation emitted by any unknown isolated rotating neutron stars within the search range. Strain limits below 1.E-24 are obtained over a 200-Hz band, and the sensitivity improvement over previous searches increases the spatial volume sampled by an average factor of about 100 over the entire search band. For a neutron star with nominal equatorial ellipticity of 1.0E-6, the search is sensitive to distances as great as 500 pc--a range that could encompass many undiscovered neutron stars, albeit only a tiny fraction of which would likely be rotating fast enough to be accessible to LIGO. This ellipticity is at the upper range thought to be sustainable by conventional neutron stars and well below the maximum sustainable by a strange quark star.Comment: 6 pages, 1 figur
    • …
    corecore