17 research outputs found

    Transcriptional Profiles of Skeletal Muscle Associated With Increasing Severity of White Striping in Commercial Broilers

    Get PDF
    Development of the white striping (WS) abnormality adversely impacts overall quality of broiler breast meat. Its etiology remains unclear. This study aimed at exploring transcriptional profiles of broiler skeletal muscles exhibiting different WS severity to elucidate molecular mechanisms underlying the development and progression of WS. Total RNA was isolated from pectoralis major of male 7-week-old Ross 308 broilers. The samples were classified as mild (n = 6), moderate (n = 6), or severe (n = 4), based on number and thickness of the white striations on the meat surface. The transcriptome was profiled using a chicken gene expression microarray with one-color hybridization technique. Gene expression patterns of each WS severity level were compared against each other; hence, there were three comparisons: moderate vs. mild (C1), severe vs. moderate (C2), and severe vs. mild (C3). Differentially expressed genes (DEGs) were identified using the combined criteria of false discovery rate 64 0.05 and absolute fold change 651.2. Differential expression of 91, 136, and 294 transcripts were identified in C1, C2, and C3, respectively. There were no DEGs in common among the three comparisons. Based on pathway analysis, the enriched pathways of C1 were related with impaired homeostasis of macronutrients and small biochemical molecules with disrupted Ca2+-related pathways. Decreased abundance of the period circadian regulator suggested the shifted circadian phase when moderate WS developed. The enriched pathways uniquely obtained in C2 were RNA degradation, Ras signaling, cellular senescence, axon guidance, and salivary secretion. The DEGs identified in those pathways might play crucial roles in regulating cellular ion balances and cell-cycle arrest. In C3, the pathways responsible for phosphatidylinositol 3-kinase-Akt signaling, p53 activation, apoptosis, and hypoxia-induced processes were modified. Additionally, pathways associated with a variety of diseases with the DEGs involved in regulation of [Ca2+], collagen formation, microtubule-based motor, and immune response were identified. Eight pathways were common to all three comparisons (i.e., calcium signaling, Ras-associated protein 1 signaling, ubiquitin-mediated proteolysis, vascular smooth muscle contraction, oxytocin signaling, and pathway in cancer). The current findings support the role of intracellular ion imbalance, particularly Ca2+, oxidative stress, and impaired programmed cell death on WS progression

    Insights Into Transcriptome Profiles Associated With Wooden Breast Myopathy in Broilers Slaughtered at the Age of 6 or 7 Weeks

    Get PDF
    open9siThis research was financially supported by Cluster and Program Management, National Science and Technology Development Agency (Thailand; project number P15-50668), and by Office of the Permanent Secretary, Ministry of Higher Education, Science, Research and Innovation (Thailand; P20-50946 and P21-50165).Transcriptomes associated with wooden breast (WB) were characterized in broilers at two different market ages. Breasts (Pectoralis major) were collected, 20-min postmortem, from male Ross 308 broilers slaughtered at 6 and 7 weeks of age. The breasts were classified as “non-WB” or “WB” based on palpation hardness scoring (non-WB = no abnormal hardness, WB = consistently hardened). Total RNA was isolated from 16 samples (n = 3 for 6 week non-WB, n = 3 for 6 week WB; n = 5 for 7 week non-WB, n = 5 for 7 week WB). Transcriptome was profiled using a chicken gene expression microarray with one-color hybridization technique, and compared between non-WB and WB samples of the same age. Among 6 week broilers, 910 transcripts were differentially expressed (DE) (false discovery rate, FDR < 0.05). Pathway analysis underlined metabolisms of glucose and lipids along with gap junctions, tight junction, and focal adhesion (FA) signaling as the top enriched pathways. For the 7 week broilers, 1,195 transcripts were identified (FDR < 0.05) with regulation of actin cytoskeleton, mitogen-activated protein kinase (MAPK) signaling, protein processing in endoplasmic reticulum and FA signaling highlighted as the enriched affected pathways. Absolute transcript levels of eight genes (actinin-1 – ACTN1, integrin-linked kinase – ILK, integrin subunit alpha 8 – ITGA8, integrin subunit beta 5 – ITGB5, protein tyrosine kinase 2 – PTK2, paxillin – PXN, talin 1 – TLN1, and vinculin – VCL) of FA signaling pathway were further elucidated using a droplet digital polymerase chain reaction. The results indicated that, in 6 week broilers, ITGA8 abundance in WB was greater than that of non-WB samples (p < 0.05). Concerning 7 week broilers, greater absolute levels of ACTN1, ILK, ITGA8, and TLN1, accompanied with a reduced ITGB5 were found in WB compared with non-WB (p < 0.05). Transcriptional modification of FA signaling underlined the potential of disrupted cell-cell communication that may incite aberrant molecular events in association with development of WB myopathy.openMalila, Yuwares; Uengwetwanit, Tanaporn; Thanatsang, Krittaporn V.; Arayamethakorn, Sopacha; Srimarut, Yanee; Petracci, Massimiliano; Soglia, Francesca; Rungrassamee, Wanilada; Visessanguan, WonnopMalila, Yuwares; Uengwetwanit, Tanaporn; Thanatsang, Krittaporn V.; Arayamethakorn, Sopacha; Srimarut, Yanee; Petracci, Massimiliano; Soglia, Francesca; Rungrassamee, Wanilada; Visessanguan, Wonno

    Differential expression patterns of genes associated with metabolisms, muscle growth and repair in Pectoralis major muscles of fast- and medium-growing chickens

    Get PDF
    The aim of this study was to investigate the expression of genes related to muscle growth, hypoxia and oxidative stress responses, a multi-substrate serine/threonine-protein kinase (AMPK) and AMPK-related kinases, carbohydrate metabolism, satellite cells activities and fibro- adipogenic progenitors (FAPs) in fast-growing (FG) (n = 30) and medium-growing (MG) chickens (n = 30). Pectoralis major muscles were collected at 7d, 14d, 21d, 28d, 35d and 42d of age. According to their macroscopic features, the samples from FG up to 21d of age were classified as unaffected, while all samples collected at an older age exhibited macroscopic features ascribable to white striping and/or wooden breast abnormalities. In contrast, MG samples did not show any feature associated to muscle disorders. The absolute transcript abundance of 33 target genes was examined by droplet digital polymerase chain reaction. The results showed differential gene expression profiles between FG and MG chickens at different ages. While most genes remained unchanged in MG chickens, the expression patterns of several genes in FG were significantly affected by age. Genes encoding alpha 1, alpha 2, beta 2 and gamma 3 isoforms of AMPK, as well as AMPK-related kinases, were identified as differentially expressed between the two strains. The results support the hypothesis of oxidative stress-induced muscle damage with metabolic alterations in FG chickens. An increased expression of ANXA2, DES, LITAF, MMP14, MYF5 and TGFB1 was observed in FG strain. The results suggest the occurrence of dysregulation of FAP proliferation and differentiation occurring during muscle repair. FAPs could play an important role in defining the proliferation of connective tissue (fibrosis) and deposition of intermuscular adipose tissue which represents distinctive traits of muscle abnormalities. Overall, these findings demonstrate that dysregulated molecular processes associated with myopathic lesions in chickens are strongly influenced by growth rate, and, to some extent, by age

    Monitoring of white striping and wooden breast cases and impacts on quality of breast meat collected from commercial broilers ()

    Get PDF
    Objective This study aimed at investigating white striping (WS) and wooden breast (WB) cases in breast meat collected from commercial broilers. Methods A total of 183 breast samples were collected from male Ross 308 broilers slaughtered at the age of 6 weeks (n = 100) and 7 weeks (n = 83). The breasts were subjected to meat defect inspection, meat quality determination and histology evaluation. Results Of 183, 4 breasts from 6-week-old broilers were classified as non-defective while the others exhibited the WS lesion. Among the 6-week-old birds, the defective samples from the medium size birds (carcass weight ≤2.5 kg) showed mild to moderate WS degree with no altered meat quality. Some of the breasts from the 6-week-old birds with carcass weight above 2.5 kg exhibited WB in accompanied with the WS condition. Besides of a reduction of protein content, increases in collagen matter and pH values in the defective samples (p<0.05), no other impaired quality indices were detected within this group. All 7-week-old broilers yielded carcasses weighing above 2.5 kg and showed abnormal characteristics with progressive severity. The breasts affected with severe WS and WB showed the greatest cook loss, hardness, springiness and chewiness (p<0.05). Development of WB induced significantly increased drip loss in the samples (p<0.05). Histology indicated necrotic events in the defective myofibers. Based on logistic regression, increasing percent breast weight by one unit enhanced the chance of WS and WB development with advanced severity by 50.9% and 61.0%, respectively. Delayed slaughter age from 6 to 7 weeks increased the likelihood of obtaining increased WS severity by 56.3%. Conclusion Cases of WS and WB defects in Southeast Asia have been revealed. Despite few cases of the severe WS and WB, such abnormal conditions significantly impaired technological properties and nutritional quality of broiler breasts

    Absolute expressions of hypoxia-inducible factor-1 alpha (HIF1A) transcript and the associated genes in chicken skeletal muscle with white striping and wooden breast myopathies.

    Get PDF
    Development of white striping (WS) and wooden breast (WB) in broiler breast meat have been linked to hypoxia, but their etiologies are not fully understood. This study aimed at investigating absolute expression of hypoxia-inducible factor-1 alpha subunit (HIF1A) and genes involved in stress responses and muscle repair using a droplet digital polymerase chain reaction. Total RNA was isolated from pectoralis major collected from male 6-week-old medium (carcass weight ≤ 2.5 kg) and heavy (carcass weight > 2.5 kg) broilers. Samples were classified as "non-defective" (n = 4), "medium-WS" (n = 6), "heavy-WS" (n = 7) and "heavy-WS+WB" (n = 3) based on abnormality scores. The HIF1A transcript was up-regulated in all of the abnormal groups. Transcript abundances of genes encoding 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 4 (PFKFB4), lactate dehydrogenase-A (LDHA), and phosphorylase kinase beta subunit (PHKB) were increased in heavy-WS but decreased in heavy-WS+WB. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was up-regulated in non-defective samples. The muscle-specific mu-2 isoform of glutathione S-transferases (GSTM2) was up-regulated in the abnormal samples, particularly in the heavy groups. The genes encoding myogenic differentiation (MYOD1) and myosin light chain kinase (MYLK) exhibited similar expression pattern, of which medium-WS and heavy-WS significantly increased compared to non-defective whereas expression in heavy-WS+WB was not different from either non-defective or WS-affected group. The greatest and the lowest levels of calpain-3 (CAPN3) and delta-sarcoglycan (SCGD) were observed in heavy-WS and heavy-WS+WB, respectively. Based on micrographs, the abnormal muscles primarily comprised fibers with cross-sectional areas ranging from 2,000 to 3,000 μm2. Despite induced glycolysis at the transcriptional level, lower stored glycogen in the abnormal muscles corresponded with the reduced lactate and higher pH within their meats. The findings support hypoxia within the abnormal breasts, potentially associated with oversized muscle fibers. Between WS and WB, divergent glucose metabolism, cellular detoxification and myoregeneration at the transcriptional level could be anticipated

    Investigating host-gut microbial relationship in Penaeus monodon upon exposure to Vibrio harveyi

    No full text
    To understand the host-gut microbial relationship, we used multidisciplinary platforms, metagenome, transcriptome, and metabolome analyses, to determine shrimp and intestinal microbial interactions upon 0, 6, 12, 24, and 48 h exposure to 107 CFU/mL of Vibrio harveyi, a shrimp pathogen. The bacterial communities in the intestine of shrimp were disrupted during exposure to V. harveyi. The abundance of Vibrio ASVs in the Harveyi and Vulnificus clades was significantly increased after exposure to the pathogen (6, 12, and 24 h) and decreased later after 48 h. Conversely, Pseudoalteromonas was found in lower abundance (6, 12, and 24 h) but significantly increased after 48 h of the bacterial challenge. Gene expression analysis revealed that genes belonging to several immune-related pathways, including the Toll pathway, the immune deficiency (IMD) pathway, and pattern recognition proteins (PRPs), were significantly upregulated. Early responses in the first 6 h after exposure were the genes involved in phagocytosis, pattern recognition proteins (PRPs), and signal transduction (spätzle and ankyrin). Late responses (12–48 h) were genes related to proteinases and proteinase inhibitors (PPIs), antimicrobial peptides (AMPs), and oxidative stress. Genes related to lipid metabolisms such as fatty acid metabolism and choline metabolism were also upregulated. Metabolomics analysis also showed an increase in phospholipids, including phosphocholine groups, in the intestine of shrimp exposed to the pathogen. Taken together, the gene expression and metabolomics analyses suggest the importance of lipid metabolism in the defense mechanism against bacterial invasion. Moreover, our metabolomic analysis showed a decrease in tryptophan and indole-3-acrylic acid, metabolites related to intestinal immune homeostasis, after bacterial infection. Our observations suggest that pathogenic Vibrio disrupted biological processes in the shrimp intestine, resulting in a decrease in indole-3-acrylic acid and its derivatives which in turn compromised intestinal immunity. In addition, shrimp responded to the bacterial invasion by activating metabolites related to eicosanoid and phospholipid biosynthesis. Our findings on the interactions between shrimp and intestinal microbiota will be an indispensable gateway to systems biology to better understand the function of shrimp gut microbiota and its influence on shrimp innate immunity

    Absolute transcript abundance of genes involved in muscle growth in <i>Pectoralis major</i> muscle of fast- and medium-growing chickens at different ages.

    No full text
    The genes include (a) insulin-like growth factor 1 (IGF1), (b) myogenic differentiation 1 (MYOD1), (c) myogenic factor 5 (MYF5) and (d) myostatin (MSTN). Markers and error bars depict mean value and standard deviation (n = 5). Upper case letters indicate significant differences among medium-growing chickens. Asterisks and sharps indicate significant differences between the two strains at the same age. #p<0.1, *p<0.05, **p<0.01.</p
    corecore