23 research outputs found

    GPVI and GPIbα Mediate Staphylococcal Superantigen-Like Protein 5 (SSL5) Induced Platelet Activation and Direct toward Glycans as Potential Inhibitors

    Get PDF
    Background Staphylococcus aureus (S. aureus) is a common pathogen capable of causing life-threatening infections. Staphylococcal superantigen-like protein 5 (SSL5) has recently been shown to bind to platelet glycoproteins and induce platelet activation. This study investigates further the interaction between SSL5 and platelet glycoproteins. Moreover, using a glycan discovery approach, we aim to identify potential glycans to therapeutically target this interaction and prevent SSL5-induced effects. Methodology/Principal Findings In addition to platelet activation experiments, flow cytometry, immunoprecipitation, surface plasmon resonance and a glycan binding array, were used to identify specific SSL5 binding regions and mediators. We independently confirm SSL5 to interact with platelets via GPIbα and identify the sulphated-tyrosine residues as an important region for SSL5 binding. We also identify the novel direct interaction between SSL5 and the platelet collagen receptor GPVI. Together, these receptors offer one mechanistic explanation for the unique functional influences SSL5 exerts on platelets. A role for specific families of platelet glycans in mediating SSL5-platelet interactions was also discovered and used to identify and demonstrate effectiveness of potential glycan based inhibitors in vitro. Conclusions/Significance These findings further elucidate the functional interactions between SSL5 and platelets, including the novel finding of a role for the GPVI receptor. We demonstrate efficacy of possible glycan-based approaches to inhibit the SSL5-induced platelet activation. Our data warrant further work to prove SSL5-platelet effects in viv

    Hsp90 increases LIM kinase activity by promoting its homo-dimerization

    No full text
    LIM kinase 1 (LIMK1) is a serine protein kinase that regulates the actin cytoskeleton by phosphorylation and inactivation of actin depolymerizing factor cofilin. LIMK1 activity is regulated by the Rho-GTPases via their serine/threonine kinase effectors Rho-kinase and p21-activated kinases 1 and 4 that phosphorylate LIMK1 on threonine 508 in its activation loop. The purpose of this study was to elucidate the pathway leading to the stability of LIMK1, a protein with a half-life of ∼20 h. Because the half-life of kinase-dead LIMK1 is only 4 h, it is suggestive that trans- or auto-phosphorylation is responsible for the stabilization of LIMK1. Using known Hsp90 inhibitors, we have shown that the half-life of LIMK1 in cells depends on the presence of active Hsp90. Furthermore, endogenous LIMK1 coimmunoprecipitated with endogenous Hsp90 and this interaction promoted LIMK1 homodimer formation as seen by cross-linking experiments. Hsp90 binds LIMK1 via a recognition sequence within the LIMK1 kinase domain, homologous to that of ErbB-2. Mutation of a proline residue within this sequence to glutamic acid reduces its interaction with Hsp90, inhibits homodimer formation, and reduces its half-life to 4 h. These findings implicate Hsp90 in the stabilization of LIMK1 by promoting homodimer formation and transphosphorylation. Li, R., Soosairajah, J., Harari, D., Citri, A., Price, J., Ng, H. L., Morton, C. J., Parker, M. W., Yarden, Y., Bernard, O. Hsp90 increases LIM kinase activity by promoting its homo-dimerization

    PAK4 kinase activity and somatic mutation promote carcinoma cell motility and influence inhibitor sensitivity

    No full text
    Hepatocyte growth factor (HGF) and its receptor (c-Met) are associated with cancer cell motility and invasiveness. p21-activated kinase 4 (PAK4), a potential therapeutic target, is recruited to and activated by c-Met. In response, PAK4 phosphorylates LIM kinase 1 (LIMK1) in an HGF-dependent manner in metastatic prostate carcinoma cells. PAK4 overexpression is known to induce increased cell migration speed but the requirement for kinase activity has not been established. We have used a panel of PAK4 truncations and mutations in a combination of over-expression and RNAi rescue experiments to determine the requirement for PAK4 kinase activity during carcinoma cell motility downstream of HGF. We find that neither the kinase domain alone nor a PAK4 mutant unable to bind Cdc42 is able to fully rescue cell motility in a PAK4-deficient background. Nevertheless, we find that PAK4 kinase activity and associated LIMK1 activity are essential for carcinoma cell motility, highlighting PAK4 as a potential anti-metastatic therapeutic target. We also show here that overexpression of PAK4 harboring a somatic mutation, E329K, increased the HGF-driven motility of metastatic prostate carcinoma cells. E329 lies within the G-loop region of the kinase. Our data suggest E329K mutation leads to a modest increase in kinase activity conferring resistance to competitive ATP inhibitors in addition to promoting cell migration. The existence of such a mutation may have implications for the development of PAK4-specific competitive ATP inhibitors should PAK4 be further explored for clinical inhibition
    corecore