31 research outputs found

    Antibiotic-induced gut dysbiosis and cognitive, emotional, and behavioral changes in rodents: a systematic review and meta-analysis

    Get PDF
    There are previous epidemiological studies reporting associations between antibiotic use and psychiatric symptoms. Antibiotic-induced gut dysbiosis and alteration of microbiota-gut-brain axis communication has been proposed to play a role in this association. In this systematic review and meta-analysis, we reviewed published articles that have presented results on changes in cognition, emotion, and behavior in rodents (rats and mice) after antibiotic-induced gut dysbiosis. We searched three databases—PubMed, Web of Science, and SCOPUS to identify such articles using dedicated search strings and extracted data from 48 articles. Increase in anxiety and depression-like behavior was reported in 32.7 and 40.7 percent of the study-populations, respectively. Decrease in sociability, social novelty preference, recognition memory and spatial cognition was found in 18.1, 35.3, 26.1, and 62.5 percent of the study-populations, respectively. Only one bacterial taxon (increase in gut Proteobacteria) showed statistically significant association with behavioral changes (increase in anxiety). There were no consistent findings with statistical significance for the potential biomarkers [Brain-derived neurotrophic factor (BDNF) expression in the hippocampus, serum corticosterone and circulating IL-6 and IL-1β levels]. Results of the meta-analysis revealed a significant association between symptoms of negative valence system (including anxiety and depression) and cognitive system (decreased spatial cognition) with antibiotic intake (p \u3c 0.05). However, between-study heterogeneity and publication bias were statistically significant (p \u3c 0.05). Risk of bias was evaluated to be high in the majority of the studies. We identified and discussed several reasons that could contribute to the heterogeneity between the results of the studies examined. The results of the meta-analysis provide promising evidence that there is indeed an association between antibiotic-induced gut dysbiosis and psychopathologies. However, inconsistencies in the implemented methodologies make generalizing these results difficult. Gut microbiota depletion using antibiotics may be a useful strategy to evaluate if and how gut microbes influence cognition, emotion, and behavior, but the heterogeneity in methodologies used precludes any definitive interpretations for a translational impact on clinical practice

    Antibiotic-induced gut dysbiosis and cognitive, emotional, and behavioral changes in rodents: a systematic review and meta-analysis

    Get PDF
    There are previous epidemiological studies reporting associations between antibiotic use and psychiatric symptoms. Antibiotic-induced gut dysbiosis and alteration of microbiota-gut-brain axis communication has been proposed to play a role in this association. In this systematic review and meta-analysis, we reviewed published articles that have presented results on changes in cognition, emotion, and behavior in rodents (rats and mice) after antibiotic-induced gut dysbiosis. We searched three databases—PubMed, Web of Science, and SCOPUS to identify such articles using dedicated search strings and extracted data from 48 articles. Increase in anxiety and depression-like behavior was reported in 32.7 and 40.7 percent of the study-populations, respectively. Decrease in sociability, social novelty preference, recognition memory and spatial cognition was found in 18.1, 35.3, 26.1, and 62.5 percent of the study-populations, respectively. Only one bacterial taxon (increase in gut Proteobacteria) showed statistically significant association with behavioral changes (increase in anxiety). There were no consistent findings with statistical significance for the potential biomarkers [Brain-derived neurotrophic factor (BDNF) expression in the hippocampus, serum corticosterone and circulating IL-6 and IL-1β levels]. Results of the meta-analysis revealed a significant association between symptoms of negative valence system (including anxiety and depression) and cognitive system (decreased spatial cognition) with antibiotic intake (p \u3c 0.05). However, between-study heterogeneity and publication bias were statistically significant (p \u3c 0.05). Risk of bias was evaluated to be high in the majority of the studies. We identified and discussed several reasons that could contribute to the heterogeneity between the results of the studies examined. The results of the meta-analysis provide promising evidence that there is indeed an association between antibiotic-induced gut dysbiosis and psychopathologies. However, inconsistencies in the implemented methodologies make generalizing these results difficult. Gut microbiota depletion using antibiotics may be a useful strategy to evaluate if and how gut microbes influence cognition, emotion, and behavior, but the heterogeneity in methodologies used precludes any definitive interpretations for a translational impact on clinical practice

    Neurodevelopmental Changes in Social Reinforcement Processing: A Functional Magnetic Resonance Imaging Study.

    Get PDF
    ObjectiveIn the current study we investigated neurodevelopmental changes in response to social and non-social reinforcement.MethodsFifty-three healthy participants including 16 early adolescents (age, 10-15 years), 16 late adolescents (age, 15-18 years), and 21 young adults (age, 21-25 years) completed a social/non-social reward learning task while undergoing functional magnetic resonance imaging. Participants responded to fractal image stimuli and received social or non-social reward/non-rewards according to their accuracy. ANOVAs were conducted on both the blood oxygen level dependent response data and the product of a context-dependent psychophysiological interaction (gPPI) analysis involving ventromedial prefrontal cortex (vmPFC) and bilateral insula cortices as seed regions.ResultsEarly adolescents showed significantly increased activation in the amygdala and anterior insula cortex in response to non-social monetary rewards relative to both social reward/non-reward and monetary non-rewards compared to late adolescents and young adults. In addition, early adolescents showed significantly more positive connectivity between the vmPFC/bilateral insula cortices seeds and other regions implicated in reinforcement processing (the amygdala, posterior cingulate cortex, insula cortex, and lentiform nucleus) in response to non-reward and especially social non-reward, compared to late adolescents and young adults.ConclusionIt appears that early adolescence may be marked by: (i) a selective increase in responsiveness to non-social, relative to social, rewards; and (ii) enhanced, integrated functioning of reinforcement circuitry for non-reward, and in particular, with respect to posterior cingulate and insula cortices, for social non-reward

    Neural Responses to Fluoxetine in Youths with Disruptive Behavior and Trauma Exposure: A Pilot Study

    Get PDF
    Objective: A preliminary investigation of the impact of a serotonergic agent (fluoxetine) on symptom profile and neural response in youths with disruptive behavior disorders (DBDs) and a history of trauma exposure. Methods: There were three participant groups: (i) Youths with DBDs and trauma exposure who received fluoxetine treatment for 8 weeks (n = 11); (ii) A matched group of youths with DBDs and trauma exposure who received routine regular follow-up in an outpatient clinic (n = 10); and (iii) Typically developing youths (n = 18). All participants conducted an expression processing functional magnetic resonance imaging task twice, 8 weeks apart: (pretreatment and post-treatment for youths with DBDs). Results: Youths with DBDs and trauma exposure who received fluoxetine treatment compared to the other two groups showed: (i) significant improvement in externalizing, oppositional defiant disorder, irritability, anxiety-depression, and trauma-related symptoms; (ii) as a function of fearful expression intensity, significantly decreased amygdala response and increased recruitment of regions implicated in top-down attention control (insula cortex, inferior parietal lobule, and postcentral gyrus) and emotional regulation (ventromedial prefrontal cortex [vmPFC]); and (iii) correlation between DBD/irritability symptom improvement and increased activation of top-down attention control areas (inferior parietal lobule, insula cortex, and postcentral gyrus) and an emotion regulation area (vmPFC). Conclusions: This study provides preliminary evidence that a serotonergic agent (fluoxetine) can reduce disruptive behavior and mood symptoms in youths with DBDs and trauma exposure and that this may be mediated by enhanced activation of top-down attention control and emotion regulation areas (inferior parietal lobule, insula cortex, and vmPFC)

    Structural Atrophy of the Right Superior Frontal Gyrus in Adolescents With Severe Irritability

    Get PDF
    Severe irritability is common in youths with psychiatric disorders and results in significant dysfunction across domains (academic, social, and familial). Prior structural MRI studies in the pediatric population demonstrated that aberrations of cortical thickness (CT) and gray matter volume (GMV) in the fronto-striatal-temporal regions which have been associated with irritability. However, the directions of the correlations between structural alteration and irritability in the individual indices were not consistent. Thus, we aim to address this by implementing comprehensive assessments of CT, GMV, and local gyrification index (LGI) simultaneously in youths with severe levels of irritability by voxel-based morphometry and surface-based morphometry. One hundred and eight adolescents (46 youths with severe irritability and 62 healthy youths, average age = 14.08 years, standard deviation = 2.36) were scanned with a T1-weighted MRI sequence. The severity of irritability was measured using the affective reactivity index. In youths with severe irritability, there was decreased CT, GMV, and LGI in the right superior frontal gyrus (SFG) compared to healthy youths, and negative correlations between these indices of the SFG and irritability. Our findings suggest that structural deficits in the SFG, potentially related to its role in inhibitory control, may be critical for the neurobiology of irritability

    Individual associations of adolescent alcohol use disorder versus cannabis use disorder symptoms in neural prediction error signaling and the response to novelty

    Get PDF
    Two of the most commonly used illegal substances by adolescents are alcohol and cannabis. Alcohol use disorder (AUD) and cannabis use disorder (CUD) are associated with poorer decision-making in adolescents. In adolescents, level of AUD symptomatology has been negatively associated with striatal reward responsivity. However, little work has explored the relationship with striatal reward prediction error (RPE) representation and the extent to which any augmentation of RPE by novel stimuli is impacted. One-hundred fifty-one adolescents participated in the Novelty Task while undergoing functional magnetic resonance imaging (fMRI). In this task, participants learn to choose novel or non-novel stimuli to gain monetary reward. Level of AUD symptomatology was negatively associated with both optimal decision-making and BOLD response modulation by RPE within striatum and regions of prefrontal cortex. The neural alterations in RPE representation were particularly pronounced when participants were exploring novel stimuli. Level of CUD symptomatology moderated the relationship between novelty propensity and RPE representation within inferior parietal lobule and dorsomedial prefrontal cortex. These data expand on an emerging literature investigating individual associations of AUD symptomatology levels versus CUD symptomatology levels and RPE representation during reinforcement processing and provide insight on the role of neuro-computational processes underlying reinforcement learning/decision-making in adolescents

    Antibiotic-induced gut dysbiosis and cognitive, emotional, and behavioral changes in rodents: a systematic review and meta-analysis

    Get PDF
    There are previous epidemiological studies reporting associations between antibiotic use and psychiatric symptoms. Antibiotic-induced gut dysbiosis and alteration of microbiota-gut-brain axis communication has been proposed to play a role in this association. In this systematic review and meta-analysis, we reviewed published articles that have presented results on changes in cognition, emotion, and behavior in rodents (rats and mice) after antibiotic-induced gut dysbiosis. We searched three databases—PubMed, Web of Science, and SCOPUS to identify such articles using dedicated search strings and extracted data from 48 articles. Increase in anxiety and depression-like behavior was reported in 32.7 and 40.7 percent of the study-populations, respectively. Decrease in sociability, social novelty preference, recognition memory and spatial cognition was found in 18.1, 35.3, 26.1, and 62.5 percent of the study-populations, respectively. Only one bacterial taxon (increase in gut Proteobacteria) showed statistically significant association with behavioral changes (increase in anxiety). There were no consistent findings with statistical significance for the potential biomarkers [Brain-derived neurotrophic factor (BDNF) expression in the hippocampus, serum corticosterone and circulating IL-6 and IL-1β levels]. Results of the meta-analysis revealed a significant association between symptoms of negative valence system (including anxiety and depression) and cognitive system (decreased spatial cognition) with antibiotic intake (p \u3c 0.05). However, between-study heterogeneity and publication bias were statistically significant (p \u3c 0.05). Risk of bias was evaluated to be high in the majority of the studies. We identified and discussed several reasons that could contribute to the heterogeneity between the results of the studies examined. The results of the meta-analysis provide promising evidence that there is indeed an association between antibiotic-induced gut dysbiosis and psychopathologies. However, inconsistencies in the implemented methodologies make generalizing these results difficult. Gut microbiota depletion using antibiotics may be a useful strategy to evaluate if and how gut microbes influence cognition, emotion, and behavior, but the heterogeneity in methodologies used precludes any definitive interpretations for a translational impact on clinical practice
    corecore