978 research outputs found

    Structural dynamics and divergence of the polygalacturonase gene family in land plants

    Get PDF
    A distinct feature of eukaryotic genomes is the presence of gene families. The polygalacturonase (PG) (EC3.2.1.15) gene family is one of the largest gene families in plants. PG is a pectin-digesting enzyme with a glycoside hydrolase 28 domain. It is involved in numerous plant developmental processes. The evolutionary processes accounting for the functional divergence and the specialized functions of PGs in land plants are unclear. Here, phylogenetic and gene structure analysis of PG genes in algae and land plants revealed that land plant PG genes resulted from differential intron gain and loss, with the latter event predominating. PG genes in land plants contained 15 homologous intron blocks and 13 novel intron blocks. Intron position and phase were not conserved between PGs of algae and land plants but conserved among PG genes of land plants from moss to vascular plants, indicating that the current introns in the PGs in land plants appeared after the split between unicellular algae and multicelluar land plants. These findings demonstrate that the functional divergence and differentiation of PGs in land plants is attributable to intronic loss. Moreover, they underscore the importance of intron gain and loss in genomic adaptation to selective pressure

    Low-Concentration Phosphate Removal Using Microwave-Assisted Granular Activated Carbon Modified by Magnesium

    Get PDF
    Objectives In this study, we propose a new method for preparing magnesium-modified granular activated carbon (Mg-GAC) using microwave irradiation. The objective is to identify the optimal factors for efficiently removing low-concentration phosphate using the Mg-GAC. Methods We impregnated Mg on activated carbon and modified Mg-GAC using microwave irradiation. Experiments were conducted with modification parameters such as impregnation time (1-12 hours), impregnation solution concentration (0.5-3 M), and microwave irradiation time (0-20 minutes). Factors affecting phosphate removal were set as pH (2-10) and reaction time (0-240 minutes), and were applied to kinetic models and isothermal adsorption models. Results and Discussion After modification, particle distribution on the adsorbent's surface and 40-time increase in percent composition of Mg showed that Mg effectively coated to the GAC surface. At initial concentration of 2 mg P/L, the optimal modification conditions were 1-M Mg impregnation solution concentration, 2-hr impregnation time, and 10-min microwave irradiation time. The optimal experimental conditions for low phosphate removal efficiency were pH 4 and 180-min adsorption time. The difference of maximum removal efficiency between Mg-GAC (91.9%) and GAC (63.6%) was 28.3%. Mg-GAC is suitable for both Langmuir and Freundlich isotherm models, and the reaction kinetics followed a pseudo-second-order model. The microwave irradiation time for Mg-GAC preparation was 10 min, and the energy consumption was 0.55 kWh/g, which showed that microwave irradiation is one of promising methods for modification of GAC by metal. Conclusion The Mg-GAC modified by magnesium and microwave irradiation enhanced removal efficiency for low-concentration phosphate compared with GAC

    Rim 2/Hipa CACTA transposon display ; A new genetic marker technique in Oryza species

    Get PDF
    BACKGROUND: Transposons constitute the major fractions of repetitive sequences in eukaryotes, and have been crucial in the shaping of current genomes. Transposons are generally divided into two classes according to the mechanism underlying their transposition: RNA intermediate class 1 and DNA intermediate class 2. CACTA is a class 2 transposon superfamily, which is found exclusively in plants. As some transposons, including the CACTA superfamily, are highly abundant in plant species, and their nucleotide sequences are highly conserved within a family, they can be utilized as genetic markers, using a slightly modified version of the conventional AFLP protocol. Rim2 /Hipa is a CACTA transposon family having 16 bp consensus TIR sequences to be present in high copy numbers in rice genome. This research was carried out in order to develop a Rim2/Hipa CACTA-AFLP or Rim2/Hipa CACTA-TD (transposon display, hereafter Rim2/Hipa-TD) protocol for the study of genetic markers in map construction and the study of genetic diversity in rice. RESULTS: Rim2/Hipa-TD generated ample polymorphic profiles among the different rice accessions, and the amplification profiles were highly reproducible between different thermocyclers and Taq polymerases. These amplification profiles allowed for clear distinction between two different ecotypes, Japonica and Indica, of Oryza sativa. In the analysis of RIL populations, the Rim2/Hipa-TD markers were found to be segregated largely in a dominant manner, although in a few cases, non-parental bands were observed in the segregating populations. Upon linkage analysis, the Rim2/Hipa-TD markers were found to be distributed in the regions proximal to the centromeres of the chromosomes. The distribution of the Rim2/Hipa CACTA elements was surveyed in 15 different Oryza species via Rim2/Hipa-TD. While Rim2/Hipa-TD yielded ample amplification profiles between 100 to 700 bp in the AA diploid Oryza species, other species having BB, CC, EE, BBCC and CCDD, profiles demonstrated that most of the amplified fragments were larger than 400 bp, and that our methods were insufficient to clearly distinguish between these fragments. However, the overall amplification profiles between species in the Oryza genus were fully distinct. Phenetic relationships among the AA diploid Oryza species, as evidenced by the Rim2/Hipa-TD markers, were matched with their geographical distributions. CONCLUSION: The abundance of the Rim2/Hipa TIR sequences is very informative since the Rim2/Hipa-TD produced high polymorphic profiles with ample reproducibility within a species as well as between species in the Oryza genus. Therefore, Rim2/Hipa-TD markers can be useful in the development of high-density of genetic map around the centromeric regions. Rim2/Hipa-TD may also prove useful in evaluations of genetic variation and species relationships in the Oryza species

    A Critical Heat Generation for Safe Nuclear Fuels after a LOCA

    Get PDF
    This study applies a thermo-elasto-plastic-creep finite element procedure to the analysis of an accidental behavior of nuclear fuel as well as normal behavior. The result will be used as basic data for the robust design of nuclear power plant and fuels. We extended the range of mechanical strain from small or medium to large adopting the Hencky logarithmic strain measure in addition to the Green-Lagrange strain and Almansi strain measures, for the possible large strain situation in accidental environments. We found that there is a critical heat generation after LOCA without ECCS (event category 5), under which the cladding of fuel sustains the internal pressure and temperature for the time being for the rescue of the power plant. With the heat generation above the critical value caused by malfunctioning of the control rods, the stiffness of cladding becomes zero due to the softening by high temperature. The weak position of cladding along the length continuously bulges radially to burst and to discharge radioactive substances. This kind of cases should be avoid by any means

    Clinical Efficacy of Primary Tumor Volume Measurements: Comparison of Different Primary Sites

    Get PDF
    ObjectivesThe purpose of study was to determine the clinical efficacy of primary tumor volume measurements of different primary sites in the oropharynx compared to the oral cavity.MethodsA retrospective analysis of 85 patients with oral cavity or oropharynx cancer. The tumor area was manually outlined from axial magnetic resonance (MR) series. The software calculated the tumor volumes, automatically. The values of the primary tumor volumes were then subdivided into separate groups (≤3,500 mm3, >3,500 mm3).ResultsThe prognostic indicators were the cT and cN (oral cavity); age, primary site, cT, cN, and primary tumor volume (oropharynx) on the univariate analysis. There was no significant prognostic factor for oral cavity cancer on the multivariate analysis. Primary site, cN, and primary tumor volume were independent prognostic indicators for oropharynx cancer by multivariate analysis.ConclusionPrimary tumor volume measurement is a reliable way to stratify outcome, and make up for the weak points in the American Joint Committee on Cancer staging system with oropharynx cancer

    Enhancement of seawater corrosion resistance in copper using acetone-derived graphene coating

    Get PDF
    We show that acetone-derived graphene coating can effectively enhance the corrosion efficiency of copper (Cu) in a seawater environment (0.5-0.6 M (???3.0-3.5%) sodium chloride). By applying a drop of acetone (???20 ??l cm-2) on Cu surfaces, rapid thermal annealing allows the facile and rapid synthesis of graphene films on Cu surfaces with a monolayer coverage of almost close to ???100%. Under optimal growth conditions, acetone-derived graphene is found to have a relatively high crystallinity, comparable to common graphene grown by chemical vapor deposition. The resulting graphene-coated Cu surface exhibits 37.5 times higher corrosion resistance as compared to that of mechanically polished Cu. Further, investigation on the role of graphene coating on Cu surfaces suggests that the outstanding corrosion inhibition efficiency (IE) of 97.4% is obtained by protecting the underlying Cu against the penetration of both dissolved oxygen and chlorine ions, thanks to the closely spaced atomic structure of the graphene sheets. The increase of graphene coating thickness results in the enhancement of the overall corrosion IE up to ???99%, which can be attributed to the effective blocking of the ionic diffusion process via grain boundaries. Overall, our results suggest that the acetone-derived graphene film can effectively serve as a corrosion-inhibiting coating in the seawater level and that it may have a promising role to play for potential offshore coating.close0

    Evaluation of Concrete Durability Performance with Sodium Silicate Impregnants

    Get PDF
    This paper presents an enhanced performance in concrete impregnated with silicate compound. Two different types of impregnant materials (inorganic and combined type) are applied to concrete samples with different strength grade (21 MPa and 34 MPa). Through lab-scale test, improved performances in impregnated concrete are evaluated regarding porosity, strength, chloride diffusion coefficient, permeability of air/water, and absorption. Long-term exposure tests including strength, chloride penetration depth and contents, and electrical potential for steel corrosion are performed for different marine conditions. While the surface-impregnated concrete shows marginal increase in strength, significant improvements of porosity, absorption, and permeability are evaluated. The resistance to chloride attack reasonably improved through simply spraying the inorganic silicate in atmospheric-salt spraying condition
    corecore