1,020 research outputs found

    CXR-LLAVA: a multimodal large language model for interpreting chest X-ray images

    Full text link
    Purpose: This study aimed to develop an open-source multimodal large language model (CXR-LLAVA) for interpreting chest X-ray images (CXRs), leveraging recent advances in large language models (LLMs) to potentially replicate the image interpretation skills of human radiologists Materials and Methods: For training, we collected 592,580 publicly available CXRs, of which 374,881 had labels for certain radiographic abnormalities (Dataset 1) and 217,699 provided free-text radiology reports (Dataset 2). After pre-training a vision transformer with Dataset 1, we integrated it with an LLM influenced by the LLAVA network. Then, the model was fine-tuned, primarily using Dataset 2. The model's diagnostic performance for major pathological findings was evaluated, along with the acceptability of radiologic reports by human radiologists, to gauge its potential for autonomous reporting. Results: The model demonstrated impressive performance in test sets, achieving an average F1 score of 0.81 for six major pathological findings in the MIMIC internal test set and 0.62 for seven major pathological findings in the external test set. The model's F1 scores surpassed those of GPT-4-vision and Gemini-Pro-Vision in both test sets. In human radiologist evaluations of the external test set, the model achieved a 72.7% success rate in autonomous reporting, slightly below the 84.0% rate of ground truth reports. Conclusion: This study highlights the significant potential of multimodal LLMs for CXR interpretation, while also acknowledging the performance limitations. Despite these challenges, we believe that making our model open-source will catalyze further research, expanding its effectiveness and applicability in various clinical contexts. CXR-LLAVA is available at https://github.com/ECOFRI/CXR_LLAVA

    Impaired pulmonary ventilation beyond pneumonia in COVID-19: A preliminary observation

    Get PDF
    BACKGROUND: Coronavirus disease 2019 (COVID-19) may severely impair pulmonary function and cause hypoxia. However, the association of COVID-19 pneumonia on CT with impaired ventilation remains unexplained. This pilot study aims to demonstrate the relationship between the radiological findings on COVID-19 CT images and ventilation abnormalities simulated in a computational model linked to the patients\u27 symptoms. METHODS: Twenty-five patients with COVID-19 and four test-negative healthy controls who underwent a baseline non-enhanced CT scan: 7 dyspneic patients, 9 symptomatic patients without dyspnea, and 9 asymptomatic patients were included. A 2D U-Net-based CT segmentation software was used to quantify radiological futures of COVID-19 pneumonia. The CT image-based full-scale airway network (FAN) flow model was employed to assess regional lung ventilation. Functional and radiological features were compared across groups and correlated with the clinical symptoms. Heterogeneity in ventilation distribution and ventilation defects associated with the pneumonia and the patients\u27 symptoms were assessed. RESULTS: Median percentage ventilation defects were 0.2% for healthy controls, 0.7% for asymptomatic patients, 1.2% for symptomatic patients without dyspnea, and 11.3% for dyspneic patients. The median of percentage pneumonia was 13.2% for dyspneic patients and 0% for the other groups. Ventilation defects preferentially affected the posterior lung and worsened with increasing pneumonia linearly (y = 0.91x + 0.99, R2 = 0.73) except for one of the nine dyspneic patients who had disproportionally large ventilation defects (7.8% of the entire lung) despite mild pneumonia (1.2%). The symptomatic and dyspneic patients showed significantly right-skewed ventilation distributions (symptomatic without dyspnea: 0.86 +/- 0.61, dyspnea 0.91 +/- 0.79) compared to the patients without symptom (0.45 +/- 0.35). The ventilation defect analysis with the FAN model provided a comparable diagnostic accuracy to the percentage pneumonia in identifying dyspneic patients (area under the receiver operating characteristic curve, 0.94 versus 0.96). CONCLUSIONS: COVID-19 pneumonia segmentations from CT scans are accompanied by impaired pulmonary ventilation preferentially in dyspneic patients. Ventilation analysis with CT image-based computational modelling shows it is able to assess functional impairment in COVID-19 and potentially identify one of the aetiologies of hypoxia in patients with COVID-19 pneumonia

    Stratifying the early radiologic trajectory in dyspneic patients with COVID-19 pneumonia

    Get PDF
    OBJECTIVE: This study aimed to stratify the early pneumonia trajectory on chest radiographs and compare patient characteristics in dyspneic patients with coronavirus disease 2019 (COVID-19). MATERIALS AND METHODS: We retrospectively included 139 COVID-19 patients with dyspnea (87 men, 62.7+/-16.3 years) and serial chest radiographs from January to September 2020. Radiographic pneumonia extent was quantified as a percentage using a previously-developed deep learning algorithm. A group-based trajectory model was used to categorize the pneumonia trajectory after symptom onset during hospitalization. Clinical findings, and outcomes were compared, and Cox regression was performed for survival analysis. RESULTS: Radiographic pneumonia trajectories were categorized into four groups. Group 1 (n = 83, 59.7%) had negligible pneumonia, and group 2 (n = 29, 20.9%) had mild pneumonia. Group 3 (n = 13, 9.4%) and group 4 (n = 14, 10.1%) showed similar considerable pneumonia extents at baseline, but group 3 had decreasing pneumonia extent at 1-2 weeks, while group 4 had increasing pneumonia extent. Intensive care unit admission and mortality were significantly more frequent in groups 3 and 4 than in groups 1 and 2 (P \u3c .05). Groups 3 and 4 shared similar clinical and laboratory findings, but thrombocytopenia ( \u3c 150x103/muL) was exclusively observed in group 4 (P = .016). When compared to groups 1 and 2, group 4 (hazard ratio, 63.3; 95% confidence interval, 7.9-504.9) had a two-fold higher risk for mortality than group 3 (hazard ratio, 31.2; 95% confidence interval, 3.5-280.2), and this elevated risk was maintained after adjusting confounders. CONCLUSION: Monitoring the early radiologic trajectory beyond baseline further prognosticated at-risk COVID-19 patients, who potentially had thrombo-inflammatory responses

    Impact of Toxocariasis in Patients with Unexplained Patchy Pulmonary Infiltrate in Korea

    Get PDF
    Toxocariasis is one of the causes of pulmonary eosinophilic infiltrate that is increasing in Korea. This study was designed to identify the prevalence of toxocara seropositivity in patients with unexplained pulmonary patchy infiltrate and to evaluate associated factors. We evaluated 102 patients with unexplained pulmonary patchy infiltrate on chest computed tomography (CT) scan. As a control set, 116 subjects with normal chest CT were also evaluated. History of allergic disease, drug use, parasitic disease and raw cow liver intake were taken. Blood eosinophil count and total IgE level were measured. Specific serum IgG antibody to Toxocara canis larval antigen and specific IgG antibodies to 4 other parasites were measured by enzyme-linked immunosorbent assay (ELISA). In the infiltrate group, 66.7% subjects were toxocara seropositive whereas 22.4% of the control group were seropositive (p<0.001). In the infiltrate group, patients with a history of eating raw cow liver (odds ratio [OR], 7.8) and patients with eosinophilia (OR, 5.2) had a higher incidence of toxocara seropositivity. Thirty-five percent of toxocara seropositive patients with infiltrate exhibited migrating infiltrate and 48% had decreased infiltrate on the follow-up CT. We recommend that toxocara ELISA should be performed in patients with unexplained pulmonary patchy infiltrate, and that the eating of raw cow liver should be actively discouraged

    A Critical Systematic Review for Inhaled Corticosteroids on Lung Cancer Incidence: Not Yet Concluded Story

    Get PDF
    Background To systematically review studies on inhaled corticosteroids (ICS) and lung cancer incidence in chronic airway disease patients. Methods We conducted electronic bibliographic searches on OVID-MEDLINE, EM-BASE, and the Cochrane Database before May 2020 to identify relevant studies. Detailed data on the study population, exposure, and outcome domains were reviewed. Results Of 4,058 screened publications, 13 eligible studies in adults with chronic obstructive pulmonary disease (COPD) or asthma evaluated lung cancer incidence after ICS exposure. Pooled hazard ratio and odds ratio for developing lung cancer in ICS exposure were 0.81 (95% confidence interval, 0.64 to 1.02; I2=95.7%) from 10 studies and 1.02 (95% confidence interval 0.50 to 2.07; I2=94.7%) from three studies. Meta-regression failed to explain the substantial heterogeneity of pooled estimates. COPD and asthma were variously defined without spirometry in 11 studies. Regarding exposure assessment, three and 10 studies regarded ICS exposure as a time-dependent and fixed variable, respectively. Some studies assessed ICS use for the entire study period, whereas others assessed ICS use for 6 months to 2 years within or before study entry. Smoking was adjusted in four studies, and only four studies introduced 1 to 2 latency years in their main or subgroup analysis. Conclusion Studies published to date on ICS and lung cancer incidence had heterogeneous study populations, exposures, and outcome assessments, limiting the generation of a pooled conclusion. The beneficial effect of ICS on lung cancer incidence has not yet been established, and understanding the heterogeneities will help future researchers to establish robust evidence on ICS and lung cancer incidence

    Alternative Embryo Transfer on Day 3 or Day 5 for Reducing the Risk of Multiple Gestations

    Get PDF
    Purpose: This study was carried out to reduce the possibility of high-order multiple gestations and the failure of embryo transfer by determining their replacement date based on the number and quality of 2-day embryos. Methods: All zygotes were cocultured with cumulus cells in 10 ¹l of YS medium containing 10% human follicular fluid (hFF) for 48 or 96 hr. In period I, all embryos were transferred on day 3 (1032 cycles). In period II, the embryos were transferred on either day 3 or day 5 by determining their replacement date based on the number and quality of 2-day embryos: there were 2701 patients in whom embryos were replaced on day 3 (in the case that the number of zygotes was less than eight and the number of good-quality embryos was less than three) and 1952 patients less than 40 years old in whom embryos were replaced on day 5 (in the case that the number of zygotes was eight or more and/or the number of good-quality embryos was three or more). On the other hand, patients who were 40 years old or more were alloted to day 3 transfer cycles, regardless of the number and quality of the 2-day embryos, due to the possibility of their not producing blastocyst-stage embryos in vitro. Results: The number of embryos transferred in period II was 2.9 ± 0.6, while that in period I was 3.7 ± 0.5. The multiple pregnancy rate was significantly decreased in period II (30.7%) compared to that (49.6%) in period I, while the pregnancy and implantation rates in period II (36.1 and 16.4%, respectively) were not lower than those (34.9 and 16.1%, respectively) in period I. The rate of triplet or more gestations was significantly minimized in period II (2.3%) compared to that in period I (26.5%). Conclusions: We propose that determination of the date on which embryos should be transferred based on the number and quality of embryos on day 2 may help to maintain an acceptable pregnancy rate, while minimizing embryo transfer failure and high-order multiple gestations

    Tissue Adequacy and Safety of Percutaneous Transthoracic Needle Biopsy for Molecular Analysis in Non-Small Cell Lung Cancer: A Systematic Review and Meta-analysis

    Get PDF
    OBJECTIVE: We conducted a systematic review and meta-analysis of the tissue adequacy and complication rates of percutaneous transthoracic needle biopsy (PTNB) for molecular analysis in patients with non-small cell lung cancer (NSCLC). MATERIALS AND METHODS: We performed a literature search of the OVID-MEDLINE and Embase databases to identify original studies on the tissue adequacy and complication rates of PTNB for molecular analysis in patients with NSCLC published between January 2005 and January 2020. Inverse variance and random-effects models were used to evaluate and acquire meta-analytic estimates of the outcomes. To explore heterogeneity across the studies, univariable and multivariable meta-regression analyses were performed. RESULTS: A total of 21 studies with 2232 biopsies (initial biopsy, 8 studies; rebiopsy after therapy, 13 studies) were included. The pooled rates of tissue adequacy and complications were 89.3% (95% confidence interval [CI]: 85.6%-92.6%; I(2) = 0.81) and 17.3% (95% CI: 12.1%-23.1%; I(2) = 0.89), respectively. These rates were 93.5% and 22.2% for the initial biopsies and 86.2% and 16.8% for the rebiopsies, respectively. Severe complications, including pneumothorax requiring chest tube placement and massive hemoptysis, occurred in 0.7% of the cases (95% CI: 0%-2.2%; I(2) = 0.67). Multivariable meta-regression analysis showed that the tissue adequacy rate was not significantly lower in studies on rebiopsies (p = 0.058). The complication rate was significantly higher in studies that preferentially included older adults (p = 0.001). CONCLUSION: PTNB demonstrated an average tissue adequacy rate of 89.3% for molecular analysis in patients with NSCLC, with a complication rate of 17.3%. PTNB is a generally safe and effective diagnostic procedure for obtaining tissue samples for molecular analysis in NSCLC. Rebiopsy may be performed actively with an acceptable risk of complications if clinically required

    CT Examinations for COVID-19: A Systematic Review of Protocols, Radiation Dose, and Numbers Needed to Diagnose and Predict

    Get PDF
    Purpose Although chest CT has been discussed as a first-line test for coronavirus disease 2019 (COVID-19), little research has explored the implications of CT exposure in the population. To review chest CT protocols and radiation doses in COVID-19 publications and explore the number needed to diagnose (NND) and the number needed to predict (NNP) if CT is used as a first-line test. Materials and Methods We searched nine highly cited radiology journals to identify studies discussing the CT-based diagnosis of COVID-19 pneumonia. Study-level information on the CT protocol and radiation dose was collected, and the doses were compared with each national diagnostic reference level (DRL). The NND and NNP, which depends on the test positive rate (TPR), were calculated, given a CT sensitivity of 94% (95% confidence interval [CI]: 91%–96%) and specificity of 37% (95% CI: 26%–50%), and applied to the early outbreak in Wuhan, New York, and Italy. Results From 86 studies, the CT protocol and radiation dose were reported in 81 (94.2%) and 17 studies (19.8%), respectively. Low-dose chest CT was used more than twice as often as standard-dose chest CT (39.5% vs.18.6%), while the remaining studies (44.2%) did not provide relevant information. The radiation doses were lower than the national DRLs in 15 of the 17 studies (88.2%) that reported doses. The NND was 3.2 scans (95% CI: 2.2–6.0). The NNPs at TPRs of 50%, 25%, 10%, and 5% were 2.2, 3.6, 8.0, 15.5 scans, respectively. In Wuhan, 35418 (TPR, 58%; 95% CI: 27710–56755) to 44840 (TPR, 38%; 95% CI: 35161–68164) individuals were estimated to have undergone CT examinations to diagnose 17365 patients. During the early surge in New York and Italy, daily NNDs changed up to 5.4 and 10.9 times, respectively, within 10 weeks. Conclusion Low-dose CT protocols were described in less than half of COVID-19 publications, and radiation doses were frequently lacking. The number of populations involved in a first-line diagnostic CT test could vary dynamically according to daily TPR; therefore, caution is required in future planning

    Primary Pulmonary Plasmacytoma Presenting as Multiple Lung Nodules

    Get PDF
    Extramedullary plasmacytoma is a plasma cell tumor arising outside the bone marrow and usually occurs as a solitary tumor in the upper respiratory tract, such as the pharynx, paranasal sinuses, nasal cavity, or oral cavity [1]. Other cases develop in the lymph nodes, skin, gastrointestinal tract, genitourinary tract, and other regions. Primary pulmonary plasmacytomas are very rare and usually present as solitary lung nodules or masses [2]. Unusual cases manifest as diffuse pulmonary infiltration [3,4]. We describe here a unique case of primary pulmonary plasmacytoma, which presented as multiple lung nodules during regular screening in a patient with systemic lupus erythematosus
    corecore