60 research outputs found

    Peripheral blood RNA gene expression profiling in patients with bacterial meningitis

    Get PDF
    Objectives: The aim of present study was to find genetic pathways activated during infection with bacterial meningitis (BM) and potentially influencing the course of the infection using genome-wide RNA expression profiling combined with pathway analysis and functional annotation of the differential transcription. Methods: We analyzed 21 patients with BM hospitalized in 2008. The control group consisted of 18 healthy subjects. The RNA was extracted from whole blood, globin mRNA was depleted and gene expression profiling was performed using GeneChip Human Gene 1.0 ST Arrays which can assess the transcription of 28,869 genes. Gene expression profile data were analyzed using Bioconductor packages and Bayesian modeling. Functional annotation of the enriched gene sets was used to define the altered genetic networks. We also analyzed whether gene expression profiles depend on the clinical course and outcome. In order to verify the microarray results, the expression levels of ten functionally relevant genes with high statistical significance (CD177, IL1R2, IL18R1, IL18RAP, OLFM4, TLR5, CPA3, FCER1A, IL5RA, and IL7R) were confirmed by quantitative real-time (qRT) PCR. Results: There were 8569 genes displaying differential expression at a significance level of p < 0.05. Following False Discovery Rate (FDR) correction, a total of 5500 genes remained significant at a p-value of < 0.01. Quantitative RT-PCR confirmed the differential expression in 10 selected genes. Functional annotation and network analysis indicated that most of the genes were related to activation of humoral and cellular immune responses (enrichment score 43). Those changes were found in both adults and in children with BM compared to the healthy controls. The gene expression profiles did not significantly depend on the clinical outcome, but there was a strong influence of the specific type of pathogen underlying BM. Conclusion: This study demonstrates that there is a very strong activation of immune response at the transcriptional level during BM and that the type of pathogen influences this transcriptional activation

    Effect of chronic valproic Acid treatment on hepatic gene expression profile in wfs1 knockout mouse

    Get PDF
    Valproic acid (VPA) is a widely used anticonvulsant and mood-stabilizing drug whose use is often associated with drug-induced weight gain. Treatment with VPA has been shown to upregulate Wfs1 expression in vitro. Aim of the present study was to compare the effect of chronic VPA treatment in wild type (WT) and Wfs1 knockout (KO) mice on hepatic gene expression profile. Wild type, Wfs1 heterozygous, and homozygous mice were treated with VPA for three months (300?mg/kg i.p. daily) and gene expression profiles in liver were evaluated using Affymetrix Mouse GeneChip 1.0?ST array. We identified 42 genes affected by Wfs1 genotype, 10 genes regulated by VPA treatment, and 9 genes whose regulation by VPA was dependent on genotype. Among the genes that were regulated differentially by VPA depending on genotype was peroxisome proliferator-activated receptor delta (Ppard), whose expression was upregulated in response to VPA treatment in WT, but not in Wfs1 KO mice. Thus, regulation of Ppard by VPA is dependent on Wfs1 genotype

    A high-throughput synthetic platform enables the discovery of proteomimetic cell penetrating peptides and bioportides

    Get PDF
    Collectively, cell penetrating peptide (CPP) vectors and intrinsically active bioportides possess tremendous potential for drug delivery applications and the discrete modulation of intracellular targets including the sites of protein–protein interactions (PPIs). Such sequences are usually relatively short (< 25 AA), polycationic in nature and able to access the various intracellular compartments of eukaryotic cells without detrimental influences upon cellular biology. The high-throughput platform for bioportide discovery described herein exploits the discovery that many human proteins are an abundant source of potential CPP sequences which are reliably predicted using QSAR algorithms or other methods. Subsequently, microwave-enhanced solid phase peptides synthesis provides a high-throughput source of novel proteomimetic CPPs for screening purposes. By focussing upon cationic helical domains, often located within the molecular interfaces that facilitate PPIs, bioportides which act by a dominant-negative mechanism at such sites can be reliably identified within small number libraries of CPPs. Protocols that employ fluorescent peptides, routinely prepared by N-terminal acylation with carboxytetramethylrhodamine, further enable both the quantification of cellular uptake kinetics and the identification of specific site(s) of intracellular accretion. Chemical modifications of linear peptides, including strategies to promote and stabilise helicity, are compatible with the synthesis of second-generation bioportides with improved drug-like properties to further exploit the inherent selectivity of biologics

    Small Changes in the Primary Structure of Transportan 10 Alter the Thermodynamics and Kinetics of its Interaction with Phospholipid Vesicles

    Get PDF
    ABSTRACT: The kinetics and thermodynamics of binding of transportan 10 (tp10) and four of its variants to phospholipid vesicles, and the kinetics of peptide-induced dye efflux, were compared. Tp10 is a 21-residue, amphipathic, cationic, cell-penetrating peptide similar to helical antimicrobial peptides. The tp10 variants examined include amidated and free peptides, and replacements of tyrosine by tryptophan. Carboxy-terminal amidation or substitution of tryptophan for tyrosine enhance binding and activity. The Gibbs energies of peptide binding to membranes determined experimentally and calculated from the interfacial hydrophobicity scale are in good agreement. The Gibbs energy for insertion into the bilayer core was calculated using hydrophobicity scales of residue transfer from water to octanol and to the membrane/ water interface. Peptide-induced efflux becomes faster as the Gibbs energies for binding and insertion of the tp10 variants decrease. If anionic lipids are included, binding and efflux rate increase, as expected because all tp10 variants are cationic and an electrostatic component is added. Whether the most important effect of peptide amidation is the change in charge or an enhancement of helical structure, however, still needs to be established. Nevertheless, it is clear that the changes in efflux rate reflect the differences in the thermodynamics of binding and insertion of the free and amidated peptide groups. We have recently reported a detailed investigation (1) o

    Antioxidants have possible therapeutic activity for psoriasis

    No full text
    Poster abstrac

    Peripheral blood RNA gene expression profiling in the patients with community-acquired bacterial meningitis

    No full text
    Objectives: We aimed to describe the genetic pathways activated during the community acquired bacterial meningitis (BM) and healthy controls by using genome-wide RNA expression profiling combined with functional annotation of transcritpional changes. S518 20th ECCMID, Posters Study was performed in 21 patients with BM and their data were compared with eighteen age and sex matched healthy controls. Methods: We included 21 patients (median age 56.1 years) with culture proven BM hospitalised between the 1st of January and 31st of December 2008. The control group consisted of 18 age and sex matched subjects (median age 55.3 years). The blood samples were collected via venepuncture on admission. The RNA was extracted from whole blood, a and b globin mRNA was depleted and gene expression profiling was performed with GeneChip Human Gene 1.0 ST Arrays (Affymetrix, Santa Clara, USA) enabling the analysis of 28,869 genes. To verify the genechip results, we chose ten genes (CD177, IL1R2, IL18R1, IL18RAP, OLFM4, TLR5, CPA3, FCER1A, IL5RA, IL7R) from the gene expression profiling data and performed further analyse with real-time (RT) PCR. Quantitative RT-PCR successfully verified previously found differences. Gene expression profile data was analysed by Bayesian modelling. To define changed genetic networks functional annotation of enriched gene sets was used. Results: BM was mainly caused by Streptococcus pneumonia (14) followed by Neisseria meningitidis (2) and Streptococcus agalactiae (2). Comparing the controls with the patients, we identified the significant changes at p values of <0.05 in 8569 genes, after False Discovery Rate (FDR) correction total of 5500 genes remained significant at p value of <0.01. Functional annotation and network analysis indicated that most of the genes were related to activation of inflammatory processes. Next common of the upregulated genes were responsible for allergic reactions and anaphylaxia. Those changes were seen in our study both among the adults and the children. Conclusion: This study demonstrates a strong functional evidence of the activated immune response. This may indicate that the protective reactions caused by severe and active infection are even too strong

    Low molecular weight metabolites as possible new non-invasive tool for selecting bovine in vitro produced embryos

    Get PDF
    Selecting high quality preimplantation embryo for transfer has been the most difficult task when producing embryos in vitro. To date the most used non-invasive method is based on visual observation. Developing a non-invasive method for embryo assessment is essential to have a profitable in vitro embryo production (IVP) and embryo transfer system. Molecular characterization of embryo growth media has been proposed as an complementary method to visual assessment of embryo morphology. In this study we are demonstrating a novel method, allowing sample collection at different embryo development stages, without compromising embryo quality, to determine potential viability markers for bovine IVP. Single bovine embryos were cultured in 60”l SOF+0.4% BSA droplets under mineral oil. Twenty ”l of culture media was removed at day 2, 5 and 8 post-fertilization. A total of 58 samples were analyzed using liquid chromatography-mass spectrometry (Q-Trap 3200), followed by principal component analysis. Our results indicate that there are significant differences (p<0,00001) in concentrations for proline (m/z = 116), inositol (m/z of sodium adduct = 203) and citrate (m/z of sodium adduct = 215) also in the amino acid group of leucine and isoleucine (m/z = 132), phenylalanine (m/z = 165) and arginine (m/z = 211) between the normally developed and retarded in development embryo culture media. Platelet activating factor (m/z = 524) (PAF) was roughly 3 fold increased in day 5 to day 8 embryo culture media. Unfortunately the increase of PAF was not statistically significant between normally developing and retarded embryos. These results demonstrate that it is possible to remove culture media samples from droplets and not significantly affect embryo development. Applying this method for embryo selection provides a possibility to identify well-developing embryos and provides an opportunity for improving the herds genetic value
    • 

    corecore