47 research outputs found

    Phytochrome-dependent coordinate control of distinct aspects of nuclear and plastid gene expression during anterograde signaling and photomorphogenesis

    Get PDF
    Light perception by photoreceptors impacts plastid transcription, development, and differentiation. This photoreceptor-dependent activity suggests a mechanism for photoregulation of gene expression in the nucleus and plastid that serves to coordinate expression of critical genes of these two organelles. This coordinate expression is required for proper stoichiometric accumulation of components needed for assembly of plastids, photosynthetic light-harvesting complexes and components such as phytochromes. Chloroplast-targeted sigma factors, which function together with the plastid-encoded RNA polymerase to regulate expression of plastid-encoded genes, and nuclear-encoded plastid development factors, such as GLK1 and GLK2, are targets of phytochrome regulation. Such phytochrome-dependent functions are hypothesized to allow light-dependent regulation, and feasibly tuning, of plastid components and function in response to changes in the external environment, which directly affects photosynthesis and the potential for light-induced damage. When the size and protein composition of the light-harvesting complexes are not tuned to the external environment, imbalances in electron transport can impact the cellular redox state and cause cellular damage. We show that phytochromes specifically regulate the expression of multiple factors that function to modulate plastid transcription and, thus, provide a paradigm for coordinate expression of the nuclear and plastid genomes in response to changes in external light conditions. As phytochromes respond to changes in the prevalent wavelengths of light and light intensity, we propose that specific phytochrome-dependent molecular mechanisms are used during light-dependent signaling between the nucleus and chloroplast during photomorphogenesis to coordinate chloroplast development with plant developmental stage and the external environment

    A Racial Impact Analysis of HB 1075/SB 201

    Get PDF
    The economic and social consequences of untreated (or under-treated) substance abuse among minors are significant. This report provides a racial impact analysis of HB 1075/SB 201, legislation approved in the 2012 General Assembly session that seeks to improve access and use of substance and alcohol services by minors. In short, this policy could go a long way to ensure that families are properly educated about these life-changing (and life-saving) programs; however our analysis raises concerns related to cultural competency that may serve to undermine the legislation’s goal. Virginia is incredibly diverse and its communities vary widely with its assets and risks. In this vein, we offer concrete recommendations to maximize the policy’s racial equity. Our analysis also sheds light on the ongoing challenge Virginia’s state agencies have had to address cultural competency within its services. Additional research is necessary to determine what service gaps may exist, which would increase or decrease the racial equity impact. By answering these questions, Virginia will be better prepared to further reduce alcohol and substance abuse by all minors

    Genic and Global Functions for Paf1C in Chromatin Modification and Gene Expression in Arabidopsis

    Get PDF
    In budding yeast, intragenic histone modification is linked with transcriptional elongation through the conserved regulator Paf1C. To investigate Paf1C-related function in higher eukaryotes, we analyzed the effects of loss of Paf1C on histone H3 density and patterns of H3 methylated at K4, K27, and K36 in Arabidopsis genes, and integrated this with existing gene expression data. Loss of Paf1C did not change global abundance of H3K4me3 or H3K36me2 within chromatin, but instead led to a 3β€² shift in the distribution of H3K4me3 and a 5β€² shift in the distribution of H3K36me2 within genes. We found that genes regulated by plant Paf1C showed strong enrichment for both H3K4me3 and H3K27me3 and also showed a high degree of tissue-specific expression. At the Paf1C- and PcG-regulated gene FLC, transcriptional silencing and loss of H3K4me3 and H3K36me2 were accompanied by expansion of H3K27me3 into the promoter and transcriptional start regions and further enrichment of H3K27me3 within the transcribed region. These results highlight both genic and global functions for plant Paf1C in histone modification and gene expression, and link transcriptional activity with cellular memory

    Mobility restrictions were associated with reductions in COVID-19 incidence early in the pandemic: evidence from a real-time evaluation in 34 countries

    Get PDF
    Most countries have implemented restrictions on mobility to prevent the spread of Coronavirus disease-19 (COVID-19), entailing considerable societal costs but, at least initially, based on limited evidence of effectiveness. We asked whether mobility restrictions were associated with changes in the occurrence of COVID-19 in 34 OECD countries plus Singapore and Taiwan. Our data sources were the Google Global Mobility Data Source, which reports different types of mobility, and COVID-19 cases retrieved from the dataset curated by Our World in Data. Beginning at each country's 100th case, and incorporating a 14-day lag to account for the delay between exposure and illness, we examined the association between changes in mobility (with January 3 to February 6, 2020 as baseline) and the ratio of the number of newly confirmed cases on a given day to the total number of cases over the past 14Β days from the index day (the potentially infective 'pool' in that population), per million population, using LOESS regression and logit regression. In two-thirds of examined countries, reductions of up to 40% in commuting mobility (to workplaces, transit stations, retailers, and recreation) were associated with decreased cases, especially early in the pandemic. Once both mobility and incidence had been brought down, further restrictions provided little additional benefit. These findings point to the importance of acting early and decisively in a pandemic

    Genomic and gene-level distribution of histone H3 dimethyl lysine-27 (H3K27me2) in Arabidopsis.

    Get PDF
    Histone lysine methylation patterns underlie much of the functional diversity of nucleosomes in eukaryotes, and an interesting aspect of histone methylation is the potential functional specificity for different methylation states on a given lysine. Trimethylation of histone H3 (H3K27me3) is intimately related to developmental gene silencing through the so-called Polycomb Group (PcG) mechanism. How this modification becomes established at PcG-repressed loci is generally not known, but it has been suggested that it may be facilitated by prior occupancy by H3K27me2. In this study we mapped the genomic and gene-level distribution of H3K27me2 in Arabidopsis thaliana using ChIP and a high-density tiling microarray, and integrated this with previous maps of other chromatin features and gene expression data. At the genome level, H3K27me2 enrichment sites were sparsely distributed across chromosomes, within an average size expected for a single nucleosome, and contrasted with the longer domains seen for H3K27me3. In both heterochromatic and euchromatic segments of the genome, H3K27me2 enrichment was often localized within transposon-related genes, with the longest genomic stretches of this modification corresponding to retroelements. However, H3K27me2 was more frequently found within protein-coding genes. These genes generally also showed moderate enrichment for H3K27me3, but H3K27me2 was strongly depleted within those genes most enriched in H3K27me3. H3K27me2 within highly transcribed genes was at highest levels at transcriptional starts and was strongly depleted throughout the transcribed regions, and reached higher levels at active than at silent promoters

    A Mechanism Related to the Yeast Transcriptional Regulator Paf1c Is Required for Expression of the Arabidopsis FLC/MAF MADS Box Gene Family

    No full text
    The Arabidopsis thaliana VERNALIZATION INDEPENDENCE (VIP) gene class has multiple functions in development, including repression of flowering through activation of the MADSbox gene FLC. Epigenetic silencing of FLC plays a substantial role in the promotion of flowering through cold (vernalization). To better understand how VIP genes influence development, we undertook a genetic and molecular study of the previously uncharacterized VIP5 and VIP6 genes. We found that loss of function of these genes also resulted in downregulation of other members of the FLC/MAF gene family, including the photoperiodic pathway regulator MAF1/FLM. We cloned VIP5 and VIP6 through mapping and transcriptional profiling. Both proteins are closely related to distinct components of budding yeast Paf1C, a transcription factor that assists in establishment and maintenance of transcription-promotive chromatin modifications such as ubiquitination of H2B by Bre1/Rad6 and methylation of histone H3 lysine-4 by the trithorax-related histone methylase Set1. Genetic analysis and coimmunoprecipitation experiments suggest that VIP5 and VIP6 function in the same mechanism as the previously described VIP3 and VIP4. Our findings suggest that an evolutionarily conserved transcriptional mechanism plays an essential role in the maintenance of gene expression in higher eukaryotes and has a central function in flowering

    H3K27me2 and combinatorial modifications across protein-coding genes.

    No full text
    <p>(<b>A</b>) Cluster analyses were performed for protein-coding genes based on genic positional signals for H3K27me2, H3K27me3 and DNA methylation. The genic positional signals for H3K4me3 and H3K36me2 are also shown for the resulting five clusters. For each modification profile, data was plotted across promoter regions (columns 1–3 in each modification panel), TSS (column 4), transcribed regions (columns 5–14) and 3β€² end (column 15). (<b>B</b>) Averaged positional profiles for H3 modifications and DNA methylation are shown separately for each of the five groups. The y axis indicates the log2 of signal relative to H3. (<b>C</b>) Box plots showing the level of expression (upper panel) and expression entropy (lower panel) for each group. Boxes indicate the 25th, 50th, and 75th percentiles (bottom, center line, and top of box, respectively).</p
    corecore