55 research outputs found

    Critical-point anomalies in doped CeRhIn5

    Full text link
    The heavy-fermion compound CeRhIn5_5 can be tuned through a quantum critical point, when In is partially replaced by Sn. This way additional charge carriers are introduced and the antiferromagnetic order is gradually suppressed to zero temperature. Here we investigate the temperature-dependent optical properties of CeRh(In1x_{1-x}Snx_x)5_5 single crystals for x=4.4%x = 4.4\%, 6.9%6.9\% and 9.8%9.8\%. With increasing Sn concentration the infrared conductivity reveals a clear enhancement of the cc-ff hybridization strength. At low temperatures we observed a non-Fermi-liquid behavior in the frequency dependence of the scattering rate and effective mass in all three compounds. In addition, below a characteristic temperature T10T^* \approx 10 K, the temperature dependent resistivity ρ(T)\rho(T) follows a logT\log T behavior, typical for a non-Fermi liquid. The temperature-dependent magnetization also exhibits anomalous behavior below TT^*. Our investigation reveal that below TT^* the system shows a pronounced non-Fermi-liquid behavior and TT^* monotonically increases as the quantum critical point is approached

    Triple-sinusoid hedgehog lattice in a centrosymmetric Kondo metal

    Full text link
    Superposed symmetry-equivalent magnetic ordering wave vectors can lead to topologically non-trivial spin textures, such as magnetic skyrmions and hedgehogs, and give rise to novel quantum phenomena due to fictitious magnetic fields associated with a non-zero Berry curvature of these spin textures. To date, all known spin textures are constructed through the superposition of multiple spiral orders, where spins vary in directions with constant amplitude. Recent theoretical studies have suggested that multiple sinusoidal orders, where collinear spins vary in amplitude, can construct distinct topological spin textures regarding chirality properties. However, such textures have yet to be experimentally realised. In this work, we report the observation of a zero-field magnetic hedgehog lattice from a superposition of triple sinusoidal wave vectors in the magnetically frustrated Kondo lattice CePtAl4Ge2. Notably, we also observe the emergence of anomalous electrical and thermodynamic behaviours near the field-induced transition from the zero-field topological hedgehog lattice to a non-topological sinusoidal state. These observations highlight the role of Kondo coupling in stabilising the zero-field hedgehog state in the Kondo lattice and warrant an expedited search for other topological magnetic structures coupled with Kondo coupling

    Enhanced magnetic and thermoelectric properties in epitaxial polycrystalline SrRuO3 thin film

    Full text link
    Transition metal oxide thin films show versatile electrical, magnetic, and thermal properties which can be tailored by deliberately introducing macroscopic grain boundaries via polycrystalline solids. In this study, we focus on the modification of the magnetic and thermal transport properties by fabricating single- and polycrystalline epitaxial SrRuO3 thin films using pulsed laser epitaxy. Using epitaxial stabilization technique with atomically flat polycrystalline SrTiO3 substrate, epitaxial polycrystalline SrRuO3 thin film with crystalline quality of each grain comparable to that of single-crystalline counterpart is realized. In particular, alleviated compressive strain near the grain boundaries due to coalescence is evidenced structurally, which induced enhancement of ferromagnetic ordering of the polycrystalline epitaxial thin film. The structural variations associated with the grain boundaries further reduce the thermal conductivity without deteriorating the electronic transport, and lead to enhanced thermoelectric efficiency in the epitaxial polycrystalline thin films, compared with their single-crystalline counterpart.Comment: 24 pages, 5 figure

    Enhanced magnetic and thermoelectric properties in epitaxial polycrystalline SrRuO3 thin film

    Full text link
    Transition metal oxide thin films show versatile electrical, magnetic, and thermal properties which can be tailored by deliberately introducing macroscopic grain boundaries via polycrystalline solids. In this study, we focus on the modification of the magnetic and thermal transport properties by fabricating single- and polycrystalline epitaxial SrRuO3 thin films using pulsed laser epitaxy. Using epitaxial stabilization technique with atomically flat polycrystalline SrTiO3 substrate, epitaxial polycrystalline SrRuO3 thin film with crystalline quality of each grain comparable to that of single-crystalline counterpart is realized. In particular, alleviated compressive strain near the grain boundaries due to coalescence is evidenced structurally, which induced enhancement of ferromagnetic ordering of the polycrystalline epitaxial thin film. The structural variations associated with the grain boundaries further reduce the thermal conductivity without deteriorating the electronic transport, and lead to enhanced thermoelectric efficiency in the epitaxial polycrystalline thin films, compared with their single-crystalline counterpart.Comment: 24 pages, 5 figure

    Inhibition of Streptococcus mutans biofilm formation on composite resins containing ursolic acid

    Get PDF
    Objectives To evaluate the inhibitory effect of ursolic acid (UA)-containing composites on Streptococcus mutans (S. mutans) biofilm. Materials and Methods Composite resins with five different concentrations (0.04, 0.1, 0.2, 0.5, and 1.0 wt%) of UA (U6753, Sigma Aldrich) were prepared, and their flexural strengths were measured according to ISO 4049. To evaluate the effect of carbohydrate source on biofilm formation, either glucose or sucrose was used as a nutrient source, and to investigate the effect of saliva treatment, the specimen were treated with either unstimulated whole saliva or phosphate-buffered saline (PBS). For biofilm assay, composite disks were transferred to S. mutans suspension and incubated for 24 hr. Afterwards, the specimens were rinsed with PBS and sonicated. The colony forming units (CFU) of the disrupted biofilm cultures were enumerated. For growth inhibition test, the composites were placed on a polystyrene well cluster, and S. mutans suspension was inoculated. The optical density at 600 nm (OD600) was recorded by Infinite F200 pro apparatus (TECAN). One-way ANOVA and two-way ANOVA followed by Bonferroni correction were used for the data analyses. Results The flexural strength values did not show significant difference at any concentration (p > 0.01). In biofilm assay, the CFU score decreased as the concentration of UA increased. The influence of saliva pretreatment was conflicting. The sucrose groups exhibited higher CFU score than glucose group (p < 0.05). In bacterial growth inhibition test, all experimental groups containing UA resulted in complete inhibition. Conclusions Within the limitations of the experiments, UA included in the composite showed inhibitory effect on S. mutans biofilm formation and growth

    Effects of magnetic impurities on upper critical fields in the high-T c superconductor La-doped CaFe2As2

    No full text
    We investigate the effects of magnetic impurities on the upper critical field (μ 0 H c2) in La-doped CaFe2As2 (LaCa122) single crystals. The magnetic field dependency of the superconducting transition temperature (T c) for LaCa122 is rapidly suppressed at low fields up to ~1 kOe despite its large μ 0 H c2(0) value on the order of tens of Tesla, resulting in a large positive curvature of μ 0 H c2(T) near T c. The magnetization hysteresis (M–H) loop at temperatures above T c shows a ferromagnetic-like signal and the M(H) value rapidly increases with increasing magnetic field up to ~1 kOe. Taken together with the linear suppression of T c with the magnetization in the normal state, these results suggest that the large upward curvature of μ 0 H c2(T) near T c in La-doped CaFe2As2 mainly originates from the suppression of superconductivity due to the presence of magnetic impurities. © 2017 IOP Publishin
    corecore