16 research outputs found

    Mitochondrial 3 beta-hydroxysteroid dehydrogenase (HSD) is essential for the synthesis of progesterone by corpora lutea: An hypothesis

    Get PDF
    In mouse ovaries, the enzyme 3 beta-hydroxysteroid dehydrogenase (HSD) is distributed between microsomes and mitochondria. Throughout the follicular phase of the estrous cycle, the HSD activity in microsomes is predominant; whereas, after LH stimulation, HSD activity during the luteal phase is highest in the mitochondria. The current study examined whether or not LH stimulation always results in an increase in mitochondrial HSD activity. This was accomplished by measuring the HSD activity in microsomal and mitochondrial fractions from ovaries of pregnant mice. These animals have two peaks of LH during gestation, and one peak of LH after parturition. It was found that mitochondrial HSD activity was highest after each peak of LH. It is proposed that mitochondrial HSD is essential for the synthesis of high levels of progesterone. The increase in HSD activity in mitochondria after LH stimulation occurs because: 1) LH initiates the simultaneous synthesis of HSD and the cholesterol side-chain cleavage enzyme (P450scc); and, 2) HSD and P450scc bind together to form a complex, which becomes inserted into the inner membrane of the mitochondria. High levels of progesterone are synthesized by mitochondrial HSD because: 1) the requisite NAD+ cofactor for progesterone synthesis is provided directly by the mitochondria, rather than indirectly via the rate limiting malate-aspartate shuttle; and, 2) the end-product inhibition of P450scc by pregnenolone is eliminated because pregnenolone is converted to progesterone

    Nutrient Sensor in the Brain Directs the Action of the Brain-Gut Axis in Drosophila

    Get PDF
    Animals can detect and consume nutritive sugars without the influence of taste. However, the identity of the taste-independent nutrient sensor and the mechanism by which animals respond to the nutritional value of sugar are unclear. Here, we report that six neurosecretory cells in the Drosophila brain that produce Diuretic hormone 44 (Dh44), a homolog of the mammalian corticotropin-releasing hormone (CRH), were specifically activated by nutritive sugars. Flies in which the activity of these neurons or the expression of Dh44 was disrupted failed to select nutritive sugars. Manipulation of the function of Dh44 receptors had a similar effect. Notably, artificial activation of Dh44 receptor-1 neurons resulted in proboscis extensions and frequent episodes of excretion. Conversely, reduced Dh44 activity led to decreased excretion. Together, these actions facilitate ingestion and digestion of nutritive foods. We propose that the Dh44 system directs the detection and consumption of nutritive sugars through a positive feedback loop

    Development of Recombinant Protein-Based Vaccine Against Classical Swine Fever Virus in Pigs Using Transgenic Nicotiana benthamiana

    Get PDF
    Classical swine fever virus (CSFV) is highly contagious, and fatal to infected pigs. Vaccines against CSFV have been developed from attenuated or modified live viruses. These vaccines are effective for immunization of animals, but they are associated with problems such as the accidental spreading of viruses to animals in the field, and with barriers to trade following vaccination. Here, we report the generation of transgenic Nicotiana benthamiana plants for large-scale, cost-effective production of E2 fusion protein for use as a recombinant vaccine against CSFV in pigs. Transgenic N. benthamiana plants harboring an intergenic, single-copy insertion of a chimeric gene encoding E2 fusion protein had high levels of transgene expression. For large-scale production of E2 fusion protein from leaf tissues, we developed a protein-purification protocol consisting of cellulose-binding domain (CBD)–cellulose-based affinity purification and size-exclusion gel-filtration chromatography. E2 fusion proteins showed high immunogenicity in piglets and provided protection against CSFV challenge. The CBD in the E2 fusion protein was also highly immunogenic. These results suggest that plant-produced recombinant E2 fusion proteins can be developed into cost-effective vaccines against CSFV, with the CBD as a marker antigen to differentiate between vaccination and natural infection

    Embedding Convolution Neural Network-Based Defect Finder for Deployed Vision Inspector in Manufacturing Company Frontec

    No full text
    In collaboration with Frontec, which produces parts such as bolts and nuts for the automobile industry, Kyung Hee University and Benple Inc. develop and deploy AI system for automatic quality inspection of weld nuts. Various constraints to consider exist in adopting AI for the factory, such as response time and limited computing resources available. Our convolutional neural network (CNN) system using large-scale images must classify weld nuts within 0.2 seconds with accuracy over 95%. We designed Circular Hough Transform based preprocessing and an adjusted VGG (Visual Geometry Group) model. The system showed accuracy over 99% and response time of about 0.14 sec. We use TCP / IP protocol to communicate the embedded classification system with an existing vision inspector using LabVIEW. We suggest ways to develop and embed a deep learning framework in an existing manufacturing environment without a hardware change

    Discovery of levodopa-induced dyskinesia-associated genes using genomic studies in patients and Drosophila behavioral analyses

    No full text
    Although levodopa is the most effective medication for Parkinson's disease, long-term levodopa treatment is largely compromised due to late motor complications, including levodopa-induced dyskinesia (LID). However, the genetic basis of LID pathogenesis has not been fully understood. Here, we discover genes pathogenic for LID using Drosophila genetics and behavioral analyses combined with genome-wide association studies on 578 patients clinically diagnosed with LID. Similar to the therapeutic effect of levodopa in patients, acute levodopa treatments restore the motor defect of Parkinson's disease model flies, while prolonged treatments cause LID-related symptoms, such as increased yawing, freezing and abrupt acceleration of locomotion. These symptoms require dopamine 1-like receptor 1 and are induced by neuronal overexpression of the receptor. Among genes selected from our analyses in the patient genome, neuronal knockdown of adenylyl cyclase 2 suppresses the levodopa-induced phenotypes and the receptor overexpression-induced symptoms in Drosophila. Together, our study provides genetic insights for LID pathogenesis through the D1-like receptor-adenylyl cyclase 2 signaling axis. A combined research approach using GWAS on Parkinson's disease patients and a Drosophila model of L-DOPA-induced dyskinesia (LID) reveals that LID is linked to ADCY2 signaling.N

    Positive geotactic behaviors induced by geomagnetic field in Drosophila

    Get PDF
    Background Appropriate vertical movement is critical for the survival of flying animals. Although negative geotaxis (moving away from Earth) driven by gravity has been extensively studied, much less is understood concerning a static regulatory mechanism for inducing positive geotaxis (moving toward Earth). Results Using Drosophila melanogaster as a model organism, we showed that geomagnetic field (GMF) induces positive geotaxis and antagonizes negative gravitaxis. Remarkably, GMF acts as a sensory cue for an appetite-driven associative learning behavior through the GMF-induced positive geotaxis. This GMF-induced positive geotaxis requires the three geotaxis genes, such as cry, pyx and pdf, and the corresponding neurons residing in Johnstons organ of the flys antennae. Conclusions These findings provide a novel concept with the neurogenetic basis on the regulation of vertical movement by GMF in the flying animals

    Study of cytotoxicity of potential antituberculotics using selected methods on liver and kidney cell line

    No full text
    Charles University Faculty of Pharmacy in Hradec Králové Department of Pharmacology and Toxicology Student: Mgr. Simona Katrnošková Supervisor: PharmDr. Jana Ramos Mandíková, Ph.D. Title of Thesis: Study of cytotoxicity of potential antituberculotics using selected methods on liver and kidney cell line During pharmacologic therapy, tissues of liver and kidney are frequently exposed to high doses of xenobiotics. Via in vitro assays during preclinical testing, we are able to predict potential toxicity which helps to prevent the possible serious adverse drug reactions in clinical practice. The aim of this rigorous thesis was to state the cytotoxic profile of 4 potential antituberculotic drug candidates using appropriate cell models and in vitro assays. Another aim was to compare the cytotoxic effect of the tested compounds among themselves and to 4-aminosalicylic acid (PAS) which antituberculotic activity is known for many years. The tested substances were 3 salicylanilide diethyl phosphate-based derivatives and 4-(trifluormethyl)benzoic acid. For the cytotoxic potential assessment, we used the parameter half maximal inhibitory concentration IC50. We have used methods determining the cell metabolic activity, aminopeptidase activity, lactate dehydrogenase leakage and activity of 3/7 caspases in this..
    corecore