23 research outputs found

    Clinical associations and prognostic value of MRI-visible perivascular spaces in patients with ischemic stroke or TIA: a pooled analysis

    Get PDF
    BACKGROUND AND OBJECTIVES: Visible perivascular spaces are an MRI marker of cerebral small vessel disease and might predict future stroke. However, results from existing studies vary. We aimed to clarify this through a large collaborative multicenter analysis. METHODS: We pooled individual patient data from a consortium of prospective cohort studies. Participants had recent ischemic stroke or transient ischemic attack (TIA), underwent baseline MRI, and were followed up for ischemic stroke and symptomatic intracranial hemorrhage (ICH). Perivascular spaces in the basal ganglia (BGPVS) and perivascular spaces in the centrum semiovale (CSOPVS) were rated locally using a validated visual scale. We investigated clinical and radiologic associations cross-sectionally using multinomial logistic regression and prospective associations with ischemic stroke and ICH using Cox regression. RESULTS: We included 7,778 participants (mean age 70.6 years; 42.7% female) from 16 studies, followed up for a median of 1.44 years. Eighty ICH and 424 ischemic strokes occurred. BGPVS were associated with increasing age, hypertension, previous ischemic stroke, previous ICH, lacunes, cerebral microbleeds, and white matter hyperintensities. CSOPVS showed consistently weaker associations. Prospectively, after adjusting for potential confounders including cerebral microbleeds, increasing BGPVS burden was independently associated with future ischemic stroke (versus 0-10 BGPVS, 11-20 BGPVS: HR 1.19, 95% CI 0.93-1.53; 21+ BGPVS: HR 1.50, 95% CI 1.10-2.06; = 0.040). Higher BGPVS burden was associated with increased ICH risk in univariable analysis, but not in adjusted analyses. CSOPVS were not significantly associated with either outcome. DISCUSSION: In patients with ischemic stroke or TIA, increasing BGPVS burden is associated with more severe cerebral small vessel disease and higher ischemic stroke risk. Neither BGPVS nor CSOPVS were independently associated with future ICH

    Effects of stent shape on focal hemodynamics in intracranial atherosclerotic stenosis: A simulation study with computational fluid dynamics modeling

    Get PDF
    Background and aimsThe shape of a stent could influence focal hemodynamics and subsequently plaque growth or in-stent restenosis in intracranial atherosclerotic stenosis (ICAS). In this preliminary study, we aim to investigate the associations between stent shapes and focal hemodynamics in ICAS, using computational fluid dynamics (CFD) simulations with manually manipulated stents of different shapes.MethodsWe built an idealized artery model, and reconstructed four patient-specific models of ICAS. In each model, three variations of stent geometry (i.e., enlarged, inner-narrowed, and outer-narrowed) were developed. We performed static CFD simulation on the idealized model and three patient-specific models, and transient CFD simulation of three cardiac cycles on one patient-specific model. Pressure, wall shear stress (WSS), and low-density lipoprotein (LDL) filtration rate were quantified in the CFD models, and compared between models with an inner- or outer-narrowed stent vs. an enlarged stent. The absolute difference in each hemodynamic parameter was obtained by subtracting values from two models; a normalized difference (ND) was calculated as the ratio of the absolute difference and the value in the enlarged stent model, both area-averaged throughout the arterial wall.ResultsThe differences in focal pressure in models with different stent geometry were negligible (ND<1% for all cases). However, there were significant differences in the WSS and LDL filtration rate with different stent geometry, with ND >20% in a static model. Observable differences in WSS and LDL filtration rate mainly appeared in area adjacent to and immediately distal to the stent. In the transient simulation, the LDL filtration rate had milder temporal fluctuations than WSS.ConclusionsThe stent geometry might influence the focal WSS and LDL filtration rate in ICAS, with negligible effect on pressure. Future studies are warranted to verify the relevance of the changes in these hemodynamic parameters in governing plaque growth and possibly in-stent restenosis in ICAS

    Validity and reliability of two alternate versions of the Montreal Cognitive Assessment (Hong Kong version) for screening of Mild Neurocognitive Disorder

    No full text
    <div><p>Objective</p><p>Repeated testing using the Montreal Cognitive Assessment (MoCA) increases risks for practice effects which may bias measurements of cognitive change. The objective of this study is to develop two alternate versions of the MoCA (Hong Kong version; HK-MoCA) and to investigate the validity and reliability of the alternate versions in patients with DSM-5 Mild Neurocognitive Disorder (Mild NCD) and cognitively healthy controls.</p><p>Methods</p><p>Concurrent validity and inter-scale agreement were examined by Pearson correlation of the total scores between the original and alternate versions and the Bland-Altman Method. Criterion validity of the two alternate versions in differentiating patients with Mild NCD was tested using receiver operating characteristic curve (ROC) analysis. One-month test-retest and inter-rater reliability were examined in 20 participants. Internal consistency of the alternate versions was measured by the Cronbach’s α.</p><p>Results</p><p>30 controls (age 73.4 [4.5] years, 60% female) and 30 patients (age 75.4 [5.5] years, 73% female) with Mild NCD were recruited. Both alternate versions significantly correlated with the original version (<i>r</i> = 0.79–0.87, <i>p</i><0.001). Mean differences of 0.17 and -0.40 points were found between the total scores of the alternate with the original versions with a consistent level of agreement observed throughout the range of cognitive abilities. Both alternate versions significantly differentiated patients with Mild NCD from healthy controls (area under ROC 0.922 and 0.724, <i>p</i><0.001) and showed good one-month test-retest reliability (intra-class correlation [ICC] = 0.92 and 0.82) and inter-rater reliability (ICC = 0.99 and 0.87) and high internal consistency (Cronbach α = 0.79 and 0.75).</p><p>Conclusion</p><p>The two alternate versions of the HK-MoCA are useful for Mild NCD screening.</p></div

    ROC curves for HK-MoCA-O, HK-MoCA-A1 and HK-MoCA-A2 in differentiating patients with Mild NCD from healthy controls.

    No full text
    <p>Note that the individual ROC curves are derived from different samples (n = 60 for HK-MoCA-O, n = 30 HK-MoCA-A1 and n = 30 for HK-MoCA-A2 and combined in a single graph as shown here. AUCs are 0.839, <i>p</i><0.001 for MoCA, 0.922, <i>p</i><0.001 for HK-MoCA-A1 and 0.724, <i>p</i><0.05 for HK-MoCA-A2.</p
    corecore