39 research outputs found

    Observation of Electron Clouds in the ANKA Undulator by Means of the Microwave Transmission Method

    Get PDF
    A superconducting undulator is installed in the ANKA electron storage ring. Electron clouds could potentially contribute to the heat load of this device. A microwave transmission type electron cloud diagnostic has been installed for the undulator section of the ANKA machine. We present the system layout with particular emphasis on the electron machine aspects. Hardware transfer function results and e-cloud data for different machine settings are discussed. Special care has been taken for front end filter design both on the microwave injection and pick-up side

    Measurement of Electron Trapping in the CESR Storage Ring

    Full text link
    The buildup of low-energy electrons has been shown to affect the performance of a wide variety of particle accelerators. Of particular concern is the persistence of the cloud between beam bunch passages, which can impose limitations on the stability of operation at high beam current. We have obtained measurements of long-lived electron clouds trapped in the field of a quadrupole magnet in a positron storage ring, with lifetimes much longer than the revolution period. Based on modeling, we estimate that about 7% of the electrons in the cloud generated by a 20-bunch train of 5.3 GeV positrons with 16-ns spacing and 1.3x10111.3x10^{11} population survive longer than 2.3 ÎĽ\mus in a quadrupole field of gradient 7.4 T/m. We have observed a non-monotonic dependence of the trapping effect on the bunch spacing. The effect of a witness bunch on the measured signal provides direct evidence for the existence of trapped electrons. The witness bunch is also observed to clear the cloud, demonstrating its effectiveness as a mitigation technique.Comment: 6 pages, 9 figures, 28 citation

    ELECTRON CLOUD MODELING FOR THE ILC DAMPING RINGS

    Get PDF
    Abstract Electron cloud buildup is a primary concern for the performance of the damping rings under development for the International Linear Collider. We have performed synchrotron radiation rate calculations for the recent 3.2-km DSB3 2 lattice design using the SYNRAD utility in the Bmad accelerator software library. These results are then used to supply input parameters to the electron cloud modeling package ECLOUD. Contributions to coherent tune shifts from the field-free sections, and from the dipole and quadrupole magnets have been calculated, as well as the effect of installing solenoid windings in the field-free regions. For each element type, SYNRAD provides ring occupancy, average beam sizes, beta function values, and beta-weighted photon rates for the coherent tune shift calculation. An approximation to the antechamber design has been implemented in ECLOUD as well, moving the photoelectron source points to the edges of the antechamber entrance and removing cloud particles which enter the antechamber

    Observations and predictions at CesrTA, and outlook for ILC

    Full text link
    In this paper, we will describe some of the recent experimental measurements [1, 2, 3] performed at CESRTA [4], and the supporting simulations, which probe the interaction of the electron cloud with the stored beam. These experiments have been done over a wide range of beam energies, emittances, bunch currents, and fill patterns, to gather sufficient information to be able to fully characterize the beam-electron-cloud interaction and validate the simulation programs. The range of beam conditions is chosen to be as close as possible to those of the ILC damping ring, so that the validated simulation programs can be used to predict the performance of these rings with regard to electroncloud- related phenomena. Using the new simulation code Synrad3D to simulate the synchrotron radiation environment, a vacuum chamber design has been developed for the ILC damping ring which achieves the required level of photoelectron suppression. To determine the expected electron cloud density in the ring, EC buildup simulations have been done based on the simulated radiation environment and on the expected performance of the ILC damping ring chamber mitigation prescriptions. The expected density has been compared with analytical estimates of the instability threshold, to verify that the ILC damping ring vacuum chamber design is adequate to suppress the electron cloud single-bunch head-tail instability.Comment: 11 pages, contribution to the Joint INFN-CERN-EuCARD-AccNet Workshop on Electron-Cloud Effects: ECLOUD'12; 5-9 Jun 2012, La Biodola, Isola d'Elba, Ital

    Status of Schottky Diagnostics in the ANKA Storage Ring

    Get PDF
    The status of longitudinal and transverse Schottky observation systems for the synchrotron light source ANKA is presented. ANKA regularly operates in a dedicated low alpha mode with short bunches for the generation of coherent THz radiation. The Schottky measurement results are shown and compared with theoretical predictions for the regular as well as the different stages of the low alpha mode of operation. Special care had to be taken to control and mitigate the impact from strong coherent lines of the short bunches on the signal processing chain. The system setup is shown, expected and unexpected observations as well as applications are discussed

    Modeling incoherent electron cloud effects

    Get PDF
    Incoherent electron effects could seriously limit the beam lifetime in proton or ion storage rings, such as LHC, SPS, or RHIC, or blow up the vertical emittance of positron beams, e.g., at the B factories or in linear-collider damping rings. Different approaches to modeling these effects each have their own merits and drawbacks. We describe several simulation codes which simplify the descriptions of the beam-electron interaction and of the accelerator structure in various different ways, and present results for a toy model of the SPS. In addition, we present evidence that for positron beams the interplay of incoherent electron-cloud effects and synchrotron radiation can lead to a significant increase in vertical equilibrium emittance. The magnitude of a few incoherent e+e- scattering processes is also estimated. Options for future code development are reviewed

    Measurements of Compression and Emittance Growth after the First LCLS Bunch Compressor Chicane

    Get PDF
    The Linac Coherent Light Source (LCLS) is a SASE xray free-electron laser project presently under construction at SLAC. The injector section from RF photocathode gun through first bunch compressor chicane was installed during the fall of 2006. The first bunch compressor is located at 250 MeV and nominally compresses a 1-nC electron bunch from an rms length of about 1 mm to 0.2 mm. Transverse phase space and bunch length diagnostics are located immediately after the chicane. We present preliminary measurements and simulations of the longitudinal and transverse phase space after the chicane in various beam conditions, including extreme compression with micron-scale current spikes

    RECENT RESULTS FOR THE DEPENDENCE OF BEAM INSTABILITIES CAUSED BY ELECTRON CLOUDS AT CESRTA DUE TO VARIATIONS IN BUNCH SPACING AND CHROMATICITY*

    Get PDF
    Abstract At the Cornell Electron-Positron Storage Ring Test Accelerator (CesrTA) experiments have been studying the interaction of the electron cloud (EC) with 2.1 GeV stored electron and positron beams. These experiments are intended to characterize the dependence of beam-EC interactions on various beam parameters, such as bunch spacing and vertical chromaticity. Most experiments were performed with 30 or 45-bunch trains, at a fixed current of 0.75 mA/bunch. Earlier experiments with positrons had varied the bunch spacing between 4 and 56 ns at three different vertical chromaticity settings. More recent measurements have included electron-bunch trains to contrast the build up of EC between electron and positron beams. The dynamics of the stored beam was quantified using: a gated Beam Position Monitor (BPM) and spectrum analyzer to measure the bunch-by-bunch frequency spectrum of the bunch trains; an x-ray beam size monitor to record the bunch-by-bunch, turn-by-turn vertical size of each bunch within the trains. We report on recent observations from these experiments and additional studies, using witness bunches trailing 30 or 45-bunch positron trains, which were used for the generation of the ECs

    A pilot Internet "Value of Health" Panel: recruitment, participation and compliance

    Get PDF
    Objectives To pilot using a panel of members of the public to provide preference data via the Internet Methods A stratified random sample of members of the general public was recruited and familiarised with the standard gamble procedure using an Internet based tool. Health states were perdiodically presented in "sets" corresponding to different conditions, during the study. The following were described: Recruitment (proportion of people approached who were trained); Participation (a) the proportion of people trained who provided any preferences and (b) the proportion of panel members who contributed to each "set" of values; and Compliance (the proportion, per participant, of preference tasks which were completed). The influence of covariates on these outcomes was investigated using univariate and multivariate analyses. Results A panel of 112 people was recruited. 23% of those approached (n = 5,320) responded to the invitation, and 24% of respondents (n = 1,215) were willing to participate (net = 5.5%). However, eventual recruitment rates, following training, were low (2.1% of those approached). Recruitment from areas of high socioeconomic deprivation and among ethnic minority communities was low. Eighteen sets of health state descriptions were considered over 14 months. 74% of panel members carried out at least one valuation task. People from areas of higher socioeconomic deprivation and unmarried people were less likely to participate. An average of 41% of panel members expressed preferences on each set of descriptions. Compliance ranged from 3% to 100%. Conclusion It is feasible to establish a panel of members of the general public to express preferences on a wide range of health state descriptions using the Internet, although differential recruitment and attrition are important challenges. Particular attention to recruitment and retention in areas of high socioeconomic deprivation and among ethnic minority communities is necessary. Nevertheless, the panel approach to preference measurement using the Internet offers the potential to provide specific utility data in a responsive manner for use in economic evaluations and to address some of the outstanding methodological uncertainties in this field
    corecore