13 research outputs found

    A New Experimental Polytrauma Model in Rats: Molecular Characterization of the Early Inflammatory Response

    Get PDF
    Background. The molecular mechanisms of the immune response after polytrauma are highly complex and far from fully understood. In this paper, we characterize a new standardized polytrauma model in rats based on the early molecular inflammatory and apoptotic response. Methods. Male Wistar rats (250 g, 6–10/group) were anesthetized and exposed to chest trauma (ChT), closed head injury (CHI), or Tib/Fib fracture including a soft tissue trauma (Fx + STT) or to the following combination of injuries: (1) ChT; (2) ChT + Fx + STT; (3) ChT + CHI; (4) CHI; (5) polytrauma (PT = ChT + CHI + Fx + STT). Sham-operated rats served as negative controls. The inflammatory response was quantified at 2 hours and 4 hours after trauma by analysis of “key” inflammatory mediators, including selected cytokines and complement components, in serum and bronchoalveolar (BAL) fluid samples. Results. Polytraumatized (PT) rats showed a significant systemic and intrapulmonary release of cytokines, chemokines, and complement anaphylatoxins, compared to rats with isolated injuries or selected combinations of injuries. Conclusion. This new rat model appears to closely mimic the early immunological response of polytrauma observed in humans and may provide a valid basis for evaluation of the complex pathophysiology and future therapeutic immune modulatory approaches in experimental polytrauma

    Complement Factor C5a Inhibits Apoptosis of Neutrophils—A Mechanism in Polytrauma?

    No full text
    Life-threatening polytrauma results in early activation of the complement and apoptotic system, as well as leukocytes, ultimately leading to the clearance of damaged cells. However, little is known about interactions between the complement and apoptotic systems in PMN (polymorphonuclear neutrophils) after multiple injuries. PMN from polytrauma patients and healthy volunteers were obtained and assessed for apoptotic events along the post-traumatic time course. In vitro studies simulated complement activation by the exposure of PMN to C3a or C5a and addressed both the intrinsic and extrinsic apoptotic pathway. Specific blockade of the C5a-receptor 1 (C5aR1) on PMN was evaluated for efficacy to reverse complement-driven alterations. PMN from polytrauma patients exhibited significantly reduced apoptotic rates up to 10 days post trauma compared to healthy controls. Polytrauma-induced resistance was associated with significantly reduced Fas-ligand (FasL) and Fas-receptor (FasR) on PMN and in contrast, significantly enhanced FasL and FasR in serum. Simulation of systemic complement activation revealed for C5a, but not for C3a, a dose-dependent abrogation of PMN apoptosis in both intrinsic and extrinsic pathways. Furthermore, specific blockade of the C5aR1 reversed C5a-induced PMN resistance to apoptosis. The data suggest an important regulatory and putative mechanistic and therapeutic role of the C5a/C5aR1 interaction on PMN apoptosis after polytrauma

    Toll-Like Receptor-Mediated Cardiac Injury during Experimental Sepsis

    No full text
    Sepsis is associated with global cardiac dysfunction and with high mortality rate. The development of septic cardiomyopathy is due to complex interactions of damage-associated molecular patters, cytokines, and complement activation products. The aim of this study was to define the effects of sepsis on cardiac structure, gap junction, and tight junction (TJ) proteins. Sepsis was induced by cecal ligation and puncture in male C57BL/6 mice. After a period of 24 h, the expression of cardiac structure, gap junction, and TJ proteins was determined. Murine HL-1 cells were stimulated with LPS, and mRNA expression of cardiac structure and gap junction proteins, intracellular reactive oxygen species, and troponin I release was analyzed. Furthermore, pyrogenic receptor subtype 7 (P2X7) expression and troponin I release of human cardiomyocytes (iPS) were determined after LPS exposure. In vivo, protein expression of connexin43 and α-actinin was decreased after the onset of polymicrobial sepsis, whereas in HL-1 cells, mRNA expression of connexin43, α-actinin, and desmin was increased in the presence of LPS. Expression of TJ proteins was not affected in vivo during sepsis. Although the presence of LPS and nigericin resulted in a significant troponin I release from HL-1 cells. Sepsis affected cardiac structure and gap junction proteins in mice, potentially contributing to compromised cardiac function

    Hemorrhagic Shock Induces a Rapid Transcriptomic Shift of the Immune Balance in Leukocytes after Experimental Multiple Injury

    Get PDF
    The immune response following trauma represents a major driving force of organ dysfunction and poor outcome. Therefore, we investigated the influence of an additional hemorrhagic shock (HS) on the early posttraumatic immune dysbalance in the whole population of blood leukocytes. A well-established murine polytrauma (PT) model with or without an additional pressure-controlled HS (mean arterial pressure of 30 mmHg (±5 mmHg) for 60 mins, afterwards fluid resuscitation with balanced electrolyte solution four times the volume of blood drawn) was used. C57BL/6 mice were randomized into a control, PT, and PT + HS group with three animals in each group. Four hours after trauma, corresponding to three hours after induction of hemorrhage, RNA was isolated from all peripheral blood leukocytes, and a microarray analysis was performed. Enrichment analysis was conducted on selected genes strongly modulated by the HS. After additional HS in PT mice, the gene expression of pathways related to the innate immunity, such as IL-6 production, neutrophil chemotaxis, cell adhesion, and toll-like receptor signaling was upregulated, whereas pathways of the adaptive immune system, such as B- and T-cell activation as well as the MHC class II protein complex, were downregulated. These results demonstrate that an additional HS plays an important role in the immune dysregulation early after PT by shifting the balance to increased innate and reduced adaptive immune responses

    Early structural changes of the heart after experimental polytrauma and hemorrhagic shock

    No full text
    <div><p>Evidence is emerging that systemic inflammation after trauma drives structural and functional impairment of cardiomyocytes and leads to cardiac dysfunction, thus worsening the outcome of polytrauma patients. This study investigates the structural and molecular changes in heart tissue 4 h after multiple injuries with additional hemorrhagic shock using a clinically relevant rodent model of polytrauma. We determined mediators of systemic inflammation (keratinocyte chemoattractant, macrophage chemotactic protein 1), activated complement component C3a and cardiac troponin I in plasma and assessed histological specimen of the mouse heart via standard histomorphology and immunohistochemistry for cellular and subcellular damage and ongoing apoptosis. Further we investigated spatial and quantitative changes of connexin 43 by immunohistochemistry and western blotting. Our results show significantly increased plasma levels of both keratinocyte chemoattractant and cardiac troponin I 4 h after polytrauma and 2 h after induction of hypovolemia. Although we could not detect any morphological changes, immunohistochemical evaluation showed increased level of tissue high-mobility group box 1, which is both a damage-associated molecule and actively released as a danger response signal. Additionally, there was marked lateralization of the cardiac gap-junction protein connexin 43 following combined polytrauma and hemorrhagic shock. These results demonstrate a molecular manifestation of remote injury of cardiac muscle cells in the early phase after polytrauma and hemorrhagic shock with marked disruption of the cardiac gap junction. This disruption of an important component of the electrical conduction system of the heart may lead to arrhythmia and consequently to cardiac dysfunction.</p></div

    A CRHR1 antagonist prevents synaptic loss and memory deficits in a trauma-induced delirium-like syndrome

    Get PDF
    Older patients with severe physical trauma are at high risk of developing neuropsychiatric syndromes with global impairment of cognition, attention, and consciousness. We employed a thoracic trauma (TxT) mouse model and thoroughly analyzed age-dependent spatial and temporal posttraumatic alterations in the central nervous system. Up to 5 days after trauma, we observed a transient 50% decrease in the number of excitatory synapses specifically in hippocampal pyramidal neurons accompanied by alterations in attention and motor activity and disruption of contextual memory consolidation. In parallel, hippocampal corticotropin-releasing hormone (CRH) expression was highly upregulated, and brain-derived neurotrophic factor (BDNF) levels were significantly reduced. In vitro experiments revealed that CRH application induced neuronal autophagy with rapid lysosomal degradation of BDNF via the NF-κB pathway. The subsequent synaptic loss was rescued by BDNF as well as by specific NF-κB and CRH receptor 1 (CRHR1) antagonists. In vivo, the chronic application of a CRHR1 antagonist after TxT resulted in reversal of the observed histological, molecular, and behavioral alterations. The data suggest that neuropsychiatric syndromes (i.e., delirium) after peripheral trauma might be at least in part due to the activation of the hippocampal CRH/NF-κB/BDNF pathway, which results in a dramatic loss of synaptic contacts. The successful rescue by stress hormone receptor antagonists should encourage clinical trials focusing on trauma-induced delirium and/or other posttraumatic syndromes

    Plasma levels of inflammatory mediators and hemoglobin.

    No full text
    <p>Levels of (A) haemoglobin (Hb) in blood and (B) macrophage chemotactic protein 1 (MCP-1), (C) keratinocyte chemoattractant (KC) and (D) complement component C3a in plasma of animals 4 h after infliction of polytrauma and hemorrhagic shock (PTHS; n = 7 for Hb, n = 8 for MCP-1, KC and C3a) and native control animals (CTRL; n = 8 for Hb, n = 4 for MCP-1, n = 5 for C3a and KC). Results (B, C, D) are presented as amount of protein per total protein in plasma to unmask diluting effects from volume resuscitation. For statistical comparison of experimental means, unpaired t-tests (A, C, D) and Mann-Whitney rank sum test (B) were performed. *: p<0.05.</p
    corecore