64 research outputs found

    Preparation, characterization and in vitro activities evaluation of solid lipid nanoparticles based on PEG-40 stearate for antifungal drugs vaginal delivery

    Get PDF
    The present article reports the preparation, characterization and performance evaluation of solid lipid nanoparticles (SLNs) based on polyoxyethylene-40 stearate (PEG-40 stearate) for the administration of antifungal agents such as ketoconazole and clotrimazole. These nanoparticles could be useful in the treatment of vaginal infections sustained by Candida albicans. In particular, PEG-40 stearate was made to react with acryloyl chloride in order to introduce an easily polymerizable moiety for the creation of a second shell and to ensure a slow drug release. In addition, the differences on the release profiles between PEG-40 stearate-based nanoparticles, PEG-40 stearate acrylate based and polymerized ones, were analyzed under conditions, simulating the typical environment of Candida albicans infection. Then, the antifungal activity of nanoparticles was also evaluated in terms of minimal inhibitory concentration. Moreover, the nanoparticles were submitted to in vitro studies for evaluating the drug permeability at the site of action. Results indicated that the obtained particles are potentially useful for the treatment of vaginal infections sustained by Candida albicans

    Radical Crosslinked Albumin Microspheres as Potential Drug Delivery Systems: Preparation and In Vitro Studies

    Get PDF
    The aim of this research is the preparation of acryloylated bovine serum albumin microspheres and the evaluation of their employment in drug delivery. The influence of preparation parameters on albumin microspheres and the chemicophysical properties of loaded drugs were investigated. In particular, we focused our attention on acylation albumin degree, amount of acryloylated albumin against comonomer in the polymerization step, and finally the release profile. We considered on the interaction drug-matrix, the fuctionalization degree of albumin, and the water affinity of matrix

    Beads of acryloylated polyaminoacidic matrices containing 5-Fluorouracil for drug delivery.

    Get PDF
    Spherical polymeric microparticles have been prepared by a reverse phase suspension polymerization technique. The starting polymer was alpha,beta-poly(N-2-hydroxyethyl)-DL-aspartamide (PHEA), partially derivatized with glycidylmethacrylate (GMA). PHEA-GMA copolymer (PHG) was crosslinked in the presence of N,N'-dimethylacrylamide (DMAA) or N,N'-ethylenebisacrylamide (EBA). 5-fluorouracil was incorporated into PHG-DMAA or PHG-EBA beads both during and after the crosslinking process. Swelling studies revealed a high affinity toward aqueous medium, influenced by the presence of 5-fluorouracil. The in vitro release study showed that the release rate depends on the chemical structure of the beads and the procedure adopted to incorporate 5-fluorouracil into the microparticles

    Radical Crosslinked Albumin Microspheres as Potential Drug Delivery Systems: Preparation and In Vitro Studies

    Get PDF
    The aim of this research is the preparation of acryloylated bovine serum albumin microspheres and the evaluation of their employment in drug delivery. The influence of preparation parameters on albumin microspheres and the chemicophysical properties of loaded drugs were investigated. In particular, we focused our attention on acylation albumin degree, amount of acryloylated albumin against comonomer in the polymerization step, and finally the release profile. We considered on the interaction drug-matrix, the fuctionalization degree of albumin, and the water affinity of matrix

    Nanomedicine-based formulations containing \u3c9-3 polyunsaturated fatty acids: potential application in cardiovascular and neoplastic diseases.

    Get PDF
    Omega-3 polyunsaturated fatty acids (\u3c9-3 PUFAs) are dietary factors involved in the prevention of cardiovascular, inflammatory, and neoplastic diseases. A multidisciplinary approach - based on recent findings in nutritional science, lipid biochemistry, biotechnology, and biology of inflammation and cancer - has been recently employed to develop \u3c9-3 PUFA-containing nanoformulations with an aim to protect these fatty acids from degradation, increase their bioavailability and delivery to target tissues, and, thus, enhance their bioactivity. In some cases, these nanoformulations were designed to administer \u3c9-3 PUFAs in combination with other nutraceuticals or conventional/innovative drugs. The aim of this strategy was to increase the activities of the compounds contained in the nanoformulation and to reduce the adverse effects often induced by drugs. We herein analyze the results of papers evaluating the potential use of \u3c9-3 PUFA-containing nanomaterials in fighting cardiovascular diseases and cancer. Future directions in this field of research are also provide

    Preparation and Study of Solid Lipid Nanoparticles Based on Curcumin, Resveratrol and Capsaicin Containing Linolenic Acid

    Get PDF
    Linolenic acid (LNA) is the most highly consumed polyunsaturated fatty acid found in the human diet. It possesses anti-inflammatory effects and the ability to reverse skin-related disorders related to its deficiency. The purpose of this work was to encapsulate LNA in solid lipid nanoparticles (SLNs) based on curcumin, resveratrol and capsaicin for the treatment of atopic dermatitis. These compounds were first esterified with oleic acid to obtain two moonoleate and one oleate ester, then they were used for SLN matrix realization through the emulsification method. The intermediates of the esterification reaction were characterized by FT-IR and 1N-MR analysis. SLNs were characterized by dimensional analysis and encapsulation efficiency. Skin permeation studies, antioxidant and anti-inflammatory activities were evaluated. LNA was released over 24 h from nanoparticles, and resveratrol monooleate-filled SLNs exhibited a good antioxidant activity. The curcumin-based SLNs loaded or not with LNA did not induce significant cytotoxicity in NCTC 2544 and THP-1 cells. Moreover, these SLNs loaded with LNA inhibited the production of IL-6 in NCTC 2544 cells. Overall, our data demonstrate that the synthesized SLNs could represent an efficacious way to deliver LNA to skin cells and to preserve the anti-inflammatory properties of LNA for the topical adjuvant treatment of atopic dermatiti

    Recent Advances in Nanotechnology for the Treatment of Melanoma.

    Get PDF
    Melanoma is one of the most aggressive forms of skin cancer, with few possibilities for therapeutic approaches, due to its multi-drug resistance and, consequently, low survival rate for patients. Conventional therapies for treatment melanoma include radiotherapy, chemotherapy, targeted therapy, and immunotherapy, which have various side effects. For this reason, in recent years, pharmaceutical and biomedical research has focused on new sito-specific alternative therapeutic strategies. In this regard, nanotechnology offers numerous benefits which could improve the life expectancy of melanoma patients with very low adverse effects. This review aims to examine the latest advances in nanotechnology as an innovative strategy for treating melanoma. In particular, the use of different types of nanoparticles, such as vesicles, polymers, metal-based, carbon nanotubes, dendrimers, solid lipid, microneedles, and their combination with immunotherapies and vaccines will be discussed

    Anti-Irritant and Anti-Inflammatory Effects of DHA Encapsulated inResveratrol-Based Solid Lipid Nanoparticles in Human Keratinocytes.

    Get PDF
    We recently found that the dietary long chain omega-3 polyunsaturated fatty acid (LC-\u3c9-3 PUFA), docosahexaenoic acid (DHA), showed enhanced antineoplastic activity against colon cancer cells if encapsulated in resveratrol-based solid lipid nanoparticles (RV-SLNs). In the present study, we investigated whether the DHA enclosed in RV-SLNs (DHA-RV-SLNs) could have the potential of attenuating irritation and inflammation caused by environmental factors at the skin level. To this aim, we used two keratinocyte lines (HaCaT and NCTC 2544 cells) and exposed them to the cytotoxic action of the surfactant, sodium dodecyl sulfate (SDS), as an in vitro model of irritation, or to the pro-inflammatory activity of the cytokine TNF-\u3b1. We found that DHA enclosed in RV-SLNs significantly enhanced its ability to contrast the cytotoxic effect of SDS and to inhibit the SDS- and TNF-\u3b1-induced production of the inflammatory cytokines IL-1\u3b2, IL-6, and 1 MCP-1, in the two keratinocyte cell lines, as well as the NLRP3 inflammasome activation. Moreover, it more efficiently reduced the upsurge of reactive oxygen species (ROS) levels obtained in the presence of a pro-oxidant (H2O2). Overall, our findings suggest the possibility that a sustained dietary supplementation with DHA-RV-SLNs could efficiently protect skin from the pro-irritant and pro-inflammatory activity of environmental attacks

    Environmental micro-niche filtering shapes bacterial pioneer communities during primary colonization of a Himalayas' glacier forefield

    Get PDF
    The pedogenesis from the mineral substrate released upon glacier melting has been explained with the succession of consortia of pioneer microorganisms, whose structure and functionality are determined by the environmental conditions developing in the moraine. However, the microbiome variability that can be expected in the environmentally heterogeneous niches occurring in a moraine at a given successional stage is poorly investigated. In a 50 m2 area in the forefield of the Lobuche glacier (Himalayas, 5050 m above sea level), we studied six sites of primary colonization presenting different topographical features (orientation, elevation and slope) and harbouring greyish/dark biological soil crusts (BSCs). The spatial vicinity of the sites opposed to their topographical differences, allowed us to examine the effect of environmental conditions independently from the time of deglaciation. The bacterial microbiome diversity and their co-occurrence network, the bacterial metabolisms predicted from 16S rRNA gene high-throughput sequencing, and the microbiome intact polar lipids were investigated in the BSCs and the underlying sediment deep layers (DLs). Different bacterial microbiomes inhabited the BSCs and the DLs, and their composition varied among sites, indicating a niche-specific role of the micro-environmental conditions in the bacterial communities' assembly. In the heterogeneous sediments of glacier moraines, physico-chemical and micro-climatic variations at the site-spatial scale are crucial in shaping the microbiome microvariability and structuring the pioneer bacterial communities during pedogenesis

    Valorization of Tomato Waste as a Source of Carotenoids

    No full text
    Fast-accumulating scientific evidence from many studies has revealed that fruits and vegetables are the main source of bioactive compounds; in most cases, wastes and byproducts generated by the food processing industry present similar or a higher content of antioxidant compounds. In recent years, the ever-growing amount of agricultural and food wastes has raised serious concerns from an environmental point of view. Therefore, there is an increasing interest in finding new ways for their processing toward safely upgrading these wastes for recovering high-value-added products with a sustainable approach. Among food waste, the abundance of bioactive compounds in byproducts derived from tomato suggests possibility of utilizing them as a low-cost source of antioxidants as functional ingredients. This contribution gives an overview of latest studies on the extraction methods of carotenoids from tomato waste, along with an evaluation of their antioxidant activity, as well as their industrial applications
    • …
    corecore