11 research outputs found

    Metabolic potential of microorganisms associated with the halophyte Aster tripolium L. in saline soils

    Get PDF
    Increased soil salinization may be caused by a natural (e.g. climate change) and anthropogenic (e.g. improper fertilization and irrigation of agricultural land) factors. The submitted work assumes that microorganisms associated with plant halophytes have a unique metabolic properties that can stimulate plant growth under salt stress. The aim of the study was to determine the abundance and metabolic biodiversity of endophytic and rhizosphere microorganisms co-existing with Aster tripolium L. and compare them with the properties of soil microorganisms not affected by plant roots at a salty meadows in the vicinity of a soda factory (central Poland). In order to select halotolerant and halophilic microorganisms culture medium was enriched with various concentrations of NaCl (0, 100, 200, 400, 600 mM NaCl). Total metabolic activity of endophytic, rhizosphere and soil populations was measured to compare the community-level physiological profiles. Results of our study revealed that bacterial and fungal density increased in the following order: endophytes < soil < rhizosphere. Only the highest concentration (600 mM) of NaCl decreased the number of microorganisms. The highest total microbial metabolic activity was observed for the rhizosphere, while the activity of endophytes was higher compare to soil populations. To carbon sources which significantly differentiated zones belonged: D-lactose, 4-hydroxybenzoic acid and L-asparagine. The results are preliminary studies leading to the development of inoculum based on selected microbial halotolerant and halophilic strains which can be used in agriculture and/or recultivation of saline soils

    A window into fungal endophytism in Salicornia europaea: deciphering fungal characteristics as plant growth promoting agents

    Get PDF
    Aim Plant-endophytic associations exist only when equilibrium is maintained between both partners. This study analyses the properties of endophytic fungi inhabiting a halophyte growing in high soil salinity and tests whether these fungi are beneficial or detrimental when non-host plants are inoculated. Method Fungi were isolated from Salicornia europaea collected from two sites differing in salinization history (anthropogenic and naturally saline) and analyzed for plant growth promoting abilities and non-host plant interactions. Results Most isolated fungi belonged to Ascomycota (96%) including dematiaceous fungi and commonly known plant pathogens and saprobes. The strains were metabolically active for siderophores, polyamines and indole-3-acetic acid (mainly Aureobasidium sp.) with very low activity for phosphatases. Many showed proteolytic, lipolytic, chitinolytic, cellulolytic and amylolytic activities but low pectolytic activity. Different activities between similar fungal species found in both sites were particularly seen for Epiccocum sp., Arthrinium sp. and Trichoderma sp. Inoculating the non-host Lolium perenne with selected fungi increased plant growth, mainly in the symbiont (Epichloë)-free variety. Arthrinium gamsii CR1-9 and Stereum gausapatum ISK3-11 were most effective for plant growth promotion. Conclusions This research suggests that host lifestyle and soil characteristics have a strong effect on endophytic fungi, and environmental stress could disturb the plant-fungi relations. In favourable conditions, these fungi may be effective in facilitating crop production in non-cultivable saline lands

    Endophytic microbiota and ectomycorrhizal structure of Alnus glutinosa Gaertn. at saline and nonsaline forest sites

    No full text
    Abstract The tolerance of European alder (Alnus glutinosa Gaertn.) to soil salinity can be attributed to symbiosis with microorganisms at the absorptive root level. However, it is uncertain how soil salinity impacts microbial recruitment in the following growing season. We describe the bacterial and fungal communities in the rhizosphere and endosphere of A. glutinosa absorptive roots at three tested sites with different salinity level. We determined the morphological diversity of ectomycorrhizal (ECM) fungi, the endophytic microbiota in the rhizosphere, and the colonization of new absorptive roots in the following growing season. While bacterial diversity in the rhizosphere was higher than that in the absorptive root endosphere, the opposite was true for fungi. Actinomycetota, Frankiales, Acidothermus sp. and Streptomyces sp. were more abundant in the endosphere than in the rhizosphere, while Actinomycetota and Acidothermus sp. dominated at saline sites compared to nonsaline sites. Basidiomycota, Thelephorales, Russulales, Helotiales, Cortinarius spp. and Lactarius spp. dominated the endosphere, while Ascomycota, Hypocreales and Giberella spp. dominated the rhizosphere. The ECM symbioses formed by Thelephorales (Thelephora, Tomentella spp.) constituted the core community with absorptive roots in the spring and further colonized new root tips during the growing season. With an increase in soil salinity, the overall fungal abundance decreased, and Russula spp. and Cortinarius spp. were not present at all. Similarly, salinity also negatively affected the average length of the absorptive root. In conclusion, the endophytic microbiota in the rhizosphere of A. glutinosa was driven by salinity and season, while the ECM morphotype community was determined by the soil fungal community present during the growing season and renewed in the spring

    Mixture of Salix Genotypes Promotes Root Colonization With Dark Septate Endophytes and Changes P Cycling in the Mycorrhizosphere

    No full text
    The roots of Salix spp. can be colonized by two types of mycorrhizal fungi (ectomycorrhizal and arbuscular) and furthermore by dark-septate endophytes. The fungal root colonization is affected by the plant genotype, soil properties and their interactions. However, the impact of host diversity accomplished by mixing different Salix genotypes within the site on root-associated fungi and P-mobilization in the field is not known. It can be hypothesized that mixing of genotypes with strong eco-physiological differences changes the diversity and abundance of root-associated fungi and P-mobilization in the mycorrhizosphere based on different root characteristics. To test this hypothesis, we have studied the mixture of two fundamentally eco-physiologically different Salix genotypes (S. dasyclados cv. ‘Loden’ and S. schwerinii × S. viminalis cv. ‘Tora’) compared to plots with pure genotypes in a randomized block design in a field experiment in Northern Germany. We assessed the abundance of mycorrhizal colonization, fungal diversity, fine root density in the soil and activities of hydrolytic enzymes involved in P-mobilization in the mycorrhizosphere in autumn and following spring after three vegetation periods. Mycorrhizal and endophytic diversity was low under all Salix treatments with Laccaria tortilis being the dominating ectomyorrhizal fungal species, and Cadophora and Paraphaeosphaeria spp. being the most common endophytic fungi. Interspecific root competition increased richness and root colonization by endophytic fungi (four taxa in the mixture vs. one found in the pure host genotype cultures) more than by ectomycorrhizal fungi and increased the activities of hydrolytic soil enzymes involved in the P-mineralization (acid phosphatase and ÎČ-glucosidase) in mixed stands. The data suggest selective promotion of endophytic root colonization and changed competition for nutrients by mixture of Salix genotypes

    Image_2_Colonization of Raphanus sativus by human pathogenic microorganisms.TIF

    No full text
    Contamination of vegetables with human pathogenic microorganisms (HPMOs) is considered one of the most important problems in the food industry, as current nutritional guidelines include increased consumption of raw or minimally processed organic vegetables due to healthy lifestyle promotion. Vegetables are known to be potential vehicles for HPMOs and sources of disease outbreaks. In this study, we tested the susceptibility of radish (Raphanus sativus) to colonization by different HPMOs, including Escherichia coli PCM 2561, Salmonella enterica subsp. enterica PCM 2565, Listeria monocytogenes PCM 2191 and Bacillus cereus PCM 1948. We hypothesized that host plant roots containing bactericidal compounds are less prone to HPMO colonization than shoots and leaves. We also determined the effect of selected pathogens on radish growth to check host plant–microbe interactions. We found that one-week-old radish is susceptible to colonization by selected HPMOs, as the presence of the tested HPMOs was demonstrated in all organs of R. sativus. The differences were noticed 2 weeks after inoculation because B. cereus was most abundant in roots (log10 CFU – 2.54), S. enterica was observed exclusively in stems (log10 CFU – 3.15), and L. monocytogenes and E. coli were most abundant in leaves (log10 CFU – 4.80 and 3.23, respectively). The results suggest that E. coli and L. monocytogenes show a higher ability to colonize and move across the plant than B. cereus and S. enterica. Based on fluorescence in situ hybridization (FISH) and confocal laser scanning microscopy (CLSM) approach HPMOs were detected in extracellular matrix and in some individual cells of all analyzed organs. The presence of pathogens adversely affected the growth parameters of one-week-old R. sativus, especially leaf and stem fresh weight (decreased by 47–66 and 17–57%, respectively). In two-week-old plants, no reduction in plant biomass development was noted. This observation may result from plant adaptation to biotic stress caused by the presence of HPMOs, but confirmation of this assumption is needed. Among the investigated HPMOs, L. monocytogenes turned out to be the pathogen that most intensively colonized the aboveground part of R. sativus and at the same time negatively affected the largest number of radish growth parameters.</p

    Image_1_Colonization of Raphanus sativus by human pathogenic microorganisms.TIF

    No full text
    Contamination of vegetables with human pathogenic microorganisms (HPMOs) is considered one of the most important problems in the food industry, as current nutritional guidelines include increased consumption of raw or minimally processed organic vegetables due to healthy lifestyle promotion. Vegetables are known to be potential vehicles for HPMOs and sources of disease outbreaks. In this study, we tested the susceptibility of radish (Raphanus sativus) to colonization by different HPMOs, including Escherichia coli PCM 2561, Salmonella enterica subsp. enterica PCM 2565, Listeria monocytogenes PCM 2191 and Bacillus cereus PCM 1948. We hypothesized that host plant roots containing bactericidal compounds are less prone to HPMO colonization than shoots and leaves. We also determined the effect of selected pathogens on radish growth to check host plant–microbe interactions. We found that one-week-old radish is susceptible to colonization by selected HPMOs, as the presence of the tested HPMOs was demonstrated in all organs of R. sativus. The differences were noticed 2 weeks after inoculation because B. cereus was most abundant in roots (log10 CFU – 2.54), S. enterica was observed exclusively in stems (log10 CFU – 3.15), and L. monocytogenes and E. coli were most abundant in leaves (log10 CFU – 4.80 and 3.23, respectively). The results suggest that E. coli and L. monocytogenes show a higher ability to colonize and move across the plant than B. cereus and S. enterica. Based on fluorescence in situ hybridization (FISH) and confocal laser scanning microscopy (CLSM) approach HPMOs were detected in extracellular matrix and in some individual cells of all analyzed organs. The presence of pathogens adversely affected the growth parameters of one-week-old R. sativus, especially leaf and stem fresh weight (decreased by 47–66 and 17–57%, respectively). In two-week-old plants, no reduction in plant biomass development was noted. This observation may result from plant adaptation to biotic stress caused by the presence of HPMOs, but confirmation of this assumption is needed. Among the investigated HPMOs, L. monocytogenes turned out to be the pathogen that most intensively colonized the aboveground part of R. sativus and at the same time negatively affected the largest number of radish growth parameters.</p

    Effect of halotolerant endophytic bacteria isolated from <i>Salicornia europaea</i> L. on the growth of fodder beet (<i>Beta vulgaris</i> L.) under salt stress

    No full text
    <p>The aim of this study was to determine the influence of selected halotolerant endophytic bacteria isolated from the roots of <i>Salicornia europaea</i> on the growth parameters of <i>Beta vulgaris</i> under different concentrations of salinity. Two endophytic strains were selected as inocula for the pot experiment: <i>Pseudomonas</i> sp. ISE-12 (B1) and <i>Xanthomonadales</i> sp. CSE-34 (B2). Surface-sterilised seeds were incubated in the bacterial inoculation suspensions before sowing and cultivated in a sterile mixture of sand and vermiculite (1:1). Six salinity treatments were taken into account: 0, 50, 100, 150, 200 and 300 mM NaCl. Inoculation of seeds with B1 and B2 positively affected germination percentage and germination index and shortened mean germination time, which led to a quickening of the growth stages of seedlings. After 42 days inoculated plants had, in general, a greater root length, higher dry biomass, lower tissue water content and lower specific leaf area compared with the control. While the positive effect of B2 bacteria was visible only at low salinity, strain B1 stimulated plant growth at higher salinities (200 and 300 mM NaCl). We suggest that the superior growth promotion observed for B1 may be related to the higher metabolic activity of these bacteria.</p

    Image_1_Mixture of Salix Genotypes Promotes Root Colonization With Dark Septate Endophytes and Changes P Cycling in the Mycorrhizosphere.pdf

    No full text
    <p>The roots of Salix spp. can be colonized by two types of mycorrhizal fungi (ectomycorrhizal and arbuscular) and furthermore by dark-septate endophytes. The fungal root colonization is affected by the plant genotype, soil properties and their interactions. However, the impact of host diversity accomplished by mixing different Salix genotypes within the site on root-associated fungi and P-mobilization in the field is not known. It can be hypothesized that mixing of genotypes with strong eco-physiological differences changes the diversity and abundance of root-associated fungi and P-mobilization in the mycorrhizosphere based on different root characteristics. To test this hypothesis, we have studied the mixture of two fundamentally eco-physiologically different Salix genotypes (S. dasyclados cv. ‘Loden’ and S. schwerinii × S. viminalis cv. ‘Tora’) compared to plots with pure genotypes in a randomized block design in a field experiment in Northern Germany. We assessed the abundance of mycorrhizal colonization, fungal diversity, fine root density in the soil and activities of hydrolytic enzymes involved in P-mobilization in the mycorrhizosphere in autumn and following spring after three vegetation periods. Mycorrhizal and endophytic diversity was low under all Salix treatments with Laccaria tortilis being the dominating ectomyorrhizal fungal species, and Cadophora and Paraphaeosphaeria spp. being the most common endophytic fungi. Interspecific root competition increased richness and root colonization by endophytic fungi (four taxa in the mixture vs. one found in the pure host genotype cultures) more than by ectomycorrhizal fungi and increased the activities of hydrolytic soil enzymes involved in the P-mineralization (acid phosphatase and ÎČ-glucosidase) in mixed stands. The data suggest selective promotion of endophytic root colonization and changed competition for nutrients by mixture of Salix genotypes.</p
    corecore