17 research outputs found

    A methodological assessment of Species Distribution Models as tools to plan species conservation and niche modelling

    Get PDF
    Knowing species distribution is essential to understand a species’ ecology and conservation needs. Species distribution models (SDMs) adopt a correlative approach to infer the ecological requirements of species from field observations based on statistically or theoretically derived response surfaces. SDMs have become a widely used technique and an increasingly important tool in many fields of natural and biological sciences to address various issues in applied ecology and conservation biology. The most basic of such aims is to understand the relationships between a species and its abiotic and biotic environment and to identify areas where a given species is likely to occur. The aim of this thesis was to evaluate the effectiveness of SDMs for supporting conservation actions. In particular, we used SDMs to focus on important but less handled issues and present three case studies. In the first case, we analysed the influence of spatial scale on SDMs’ ability to detect niche differences for two sympatric species of high conservation value, the bat Barbastella barbastellus and the cerambycid beetle Rosalia alpina, which apparently share the same habitat and ecological requirements. Broad scale SDMs revealed limited differences in preferred environmental predictor variables while failed to detect differences in microhabitats occupied. Only a small-scale niche analyses provided detailed ecological differences characterizing the two species and gave information on the type of management that such species need. In the second case, we evaluated the effectiveness of SDMs in managing the conservation of a mammal species reintroduced to Serbia and Bosnia-Herzegovina, the Eurasian beaver Castor fiber, during the post-release phase. We were able to predict suitable areas that beavers might colonize in the near future and to evaluate the potential risk posed to the expanding population by the very low degree of protection offered by the national reserve network. Finally, in the third case we focused on the importance of considering species’ phenology in presence record datasets to develop SDMs. We demonstrated that SDMs developed using different seasonal data separately, i.e. records of sites used by six European bat species for hibernation or reproduction may predict only partial species’ ecological niches. Then, we suggested a more valuable method for data collection to obtain a dataset featuring equally represented seasonal records for SDMs that take into account the potential ecological requirements of the species during its complete life cycle and predict a more realistic potential geographical range. My thesis offers important guidance in the development of conservation plans, e.g. by allowing more exhaustive gap analyses, helping detect corridors or low-suitability areas in need of restoration to improve the conservation status of management-dependent species

    Unpublished Mediterranean and Black Sea records of marine alien, cryptogenic, and neonative species

    Get PDF
    To enrich spatio-temporal information on the distribution of alien, cryptogenic, and neonative species in the Mediterranean and the Black Sea, a collective effort by 173 marine scientists was made to provide unpublished records and make them open access to the scientific community. Through this effort, we collected and harmonized a dataset of 12,649 records. It includes 247 taxa, of which 217 are Animalia, 25 Plantae and 5 Chromista, from 23 countries surrounding the Mediterranean and the Black Sea. Chordata was the most abundant taxonomic group, followed by Arthropoda, Mollusca, and Annelida. In terms of species records, Siganus luridus, Siganus rivulatus, Saurida lessepsianus, Pterois miles, Upeneus moluccensis, Charybdis (Archias) longicollis, and Caulerpa cylindracea were the most numerous. The temporal distribution of the records ranges from 1973 to 2022, with 44% of the records in 2020–2021. Lethrinus borbonicus is reported for the first time in the Mediterranean Sea, while Pomatoschistus quagga, Caulerpa cylindracea, Grateloupia turuturu, and Misophria pallida are first records for the Black Sea; Kapraunia schneideri is recorded for the second time in the Mediterranean and for the first time in Israel; Prionospio depauperata and Pseudonereis anomala are reported for the first time from the Sea of Marmara. Many first country records are also included, namely: Amathia verticillata (Montenegro), Ampithoe valida (Italy), Antithamnion amphigeneum (Greece), Clavelina oblonga (Tunisia and Slovenia), Dendostrea cf. folium (Syria), Epinephelus fasciatus (Tunisia), Ganonema farinosum (Montenegro), Macrorhynchia philippina (Tunisia), Marenzelleria neglecta (Romania), Paratapes textilis (Tunisia), and Botrylloides diegensis (Tunisia).Stelios Katsanevakis, Michail Ragkousis, Maria Sini, Markos Digenis and Vasilis Gerovasileiou were supported by the Hellenic Foundation for Research and Innovation (HFRI) under the “First Call for HFRI Research Projects to support Faculty members and Researchers and the procurement of high-cost research equipment grant” (Project ALAS – “ALiens in the Aegean – a Sea under siege” (Katsanevakis et al. 2020b); Project Number: HFRI-FM17-1597). Konstantinos Tsirintanis was co-financed by Greece and the European Union (European Social Fund-ESF) through the Operational Programme “Human Resources Development, Education and Lifelong Learning”, 2014-2020, in the context of the Act “Enhancing Human Resources Research Potential by undertaking a Doctoral Research” Sub-action 2: IKY Scholarship Programme for PhD candidates in the Greek Universities. Maria Zotou was supported by the project “Coastal Environment Observatory and Risk Management in Island Regions AEGIS+” (MIS 5047038), implemented within the Operational Programme “Competitiveness, Entrepreneurship and Innovation” (NSRF 2014-2020), co financed by the Hellenic Government (Ministry of Development and Investments) and the European Union (European Regional Development Fund, Cohesion Fund). Razy Hoffman was supported by Yad-Hanadiv Foundation, through the Israel Society of Ecology and Environmental Sciences and Israel Nature and Parks Authority, an integrated program for establishing biological baselines and monitoring protocols for marine reserves in the Israeli Mediterranean Sea (Grant #10669). Tatiana Begun, Adrian Teaca and Mihaela Muresan were supported by the European Union’s Horizon 2020 BRIDGE-BS project under grant agreement no. 101000240. Fiona Tomas was supported by the project “Invasion of the tropical alga Halimeda incrassata in the Balearic Islands: ecology and invasion dynamics (AAEE119/2017)”, funded by the Vicepresidencia y ConsejerĂ­a de InnovaciĂłn, InvestigaciĂłn y Turismo del Govern de les Illes Balears, with support from the European Union and FEDER funds, and the project “Una nueva alga invasora en el MediterrĂĄneo: invasibilidad, detecciĂłn y erradicaciĂłn del alga tropical Halimeda incrassata (INVHALI)”, funded by the FundaciĂłn Biodiversidad, del Ministerio para la TransiciĂłn EcolĂłgica y el Reto DemogrĂĄfico. Simonetta Fraschetti, Laura Tamburello, Antonia Chiarore were supported by the project PO FEAMP 2014-2020 - DRD n. 35/2019, “Innovazione, sviluppo e sostenibilitĂ  nel settore della pesca e dell'acquacoltura per la Regione Campania” (ISSPA 2.51) and the EU EASME - EMFF (Sustainable Blue Econ-omy) Project AFRIMED (http://afrimed-project.eu/, grant agreement N. 789059). Carlos Jimenez, Louis Hadjioannou, Vasilis Resaikos, Valentina Fossati, Magdalene Papatheodoulou, and Antonis Petrou were supported by MedPan Small Projects, Mava, and LIFE-IP. Louis Hadjioannou, Manos L. Moraitis and Neophytos Agrotis received funding from the European Union’s Horizon 2020 research and innovation program within the framework of the CMMI/MaRITeC-X project under grant agreement No. 857586. Ernesto Azzurro was supported by the project USEIt - Utilizzo di Sinergie operative per la gestione integrata specie aliene Invasive in Italia, funded by the research programme @CNR. Antonietta Rosso and Francesco Sciuto were supported by the University of Catania through “PiaCeRi-Piano Incentivi per la Ricerca di Ateneo 2020–22 linea di intervento 2.” This is the Catania Paleoecological Research Group contribution n. 484. Diego K. Kersting was supported by the Beatriu de PinĂłs programme funded by the Secretary of Universities and Research (Government of Catalonia) and the Horizon 2020 programme of research and innovation of the European Union under the Marie Sklodowska-Curie grant agreement No 801370. Francesco Tiralongo was supported by the AlienFish project of Ente Fauna Marina Mediterranea (Scientific Organization for Research and Conservation of Marine Biodiversity, 96012 Avola, Italy), a citizen science project for monitoring and studying rare and non-indigenous fish in Italian waters. Adriana Vella, was supported by funds through the BioCon_Innovate Research Excellence Grant from the University of Malta awarded to her. Noel Vella was supported by REACH HIGH Scholars Programme-Post Doctoral Grant for the FINS project. Some of the records provided by Victor Surugiu were obtained during surveys carried out within the framework of the project “Adequate management of invasive species in Romania, in accordance with EU Regulation 1143/2014 on the prevention and management of the introduction and spread of invasive alien species”, SMIS 2014+ 120008, coordinated by the Romanian Ministry of Environment, Water and Forests in partnership with the University of Bucharest (2018–2022). Alan Deidun and Alessio Marrone were supported by the “Spot The Alien” citizen science campaign for the monitoring of the Alien species in the Maltese archipelago and by the Interreg Italia-Malta Harmony project. The authors from the National Institute of Biology (Slovenia) acknowledge the financial support of the Slovenian Research Agency (Research Core Funding No. P1-0237) and of the Ministry of Agriculture, Forestry and Food (project “Survey of the species richness and abundance of alien species in the Slovenian Sea”). Emanuele Mancini and Fabio Collepardo Coccia were supported by the project PO-FEAMP 2014-2020 “BIOBLITZ: research, knowledge and participation for the sustainable management of marine resources (BioBlitz Blu 2020)” coordinated by CURSA for MIPAAF, the Italian Ministry of Agricultural, Food and Forestry Policies, Measure 1.40 - Protection and restoration of biodiversity and marine ecosystems and compensation schemes in the context of sustainable fishing activities. Daniele Grech was supported by the PO-FEAMP 2014-2020 project ECOGESTOCK “Approccio ECOsistemico per la tutela e la GEStione delle risorse biologiche e STOCK ittici nelle acque interne”, the citizen science project Progetto Fucales: chi le ha viste? and the Paralenz Every dive counts sponsor. Jamila Rizgalla was supported by the project Snowball for the monitoring of alien species in Libyan waters له Ű§Ù‡ŰȘÙŰŽ له Ű§Ù‡ŰȘۯ۷۔ۧ ۟) have you seen it have you fished it?). Gerasimos Kondylatos and Dimitrios Mavrouleas were supported by the project “EXPLIAS” (MIS (ΟΠΣ): 5049912), design and piloting methods of commercial exploitation of invasive alien species with a view to contributing to their population control, coordinated by the National Technical University of Athens with the collaboration of the Hellenic Centre for Marine Research and the University of the Aegean and co-founded by Greece and the European Union. G. Kondylatos and Savvas Nikolidakis were supported by the project “SAMOS” (ID CODE: 32.2072004/001), a study for a submarine productive park in Marathokampos of Samos. Paraskevi K. Karachle, Aikaterini Dogrammatzi, Giorgos A. Apostolopoulos, Kassiani Konida and Melina Nalmpanti were supported by the project “4ALIEN: Biology and the potential economic exploitation of four alien species in the Hellenic Seas”, funded by NRSF 2017-2020 (MIS (ΟΠΣ): 5049511). Fabio Crocetta and Riccardo Virgili were partially funded by the project PO FEAMP Campania 2014–2020, DRD n. 35 of 15th March 2018, Innovazione, sviluppo e sostenibilitĂ  nel settore della pesca e dell’acquacoltura per la regione Campania, Misura 2.51, WP5, Task 5.5 Presenza e distribuzione di specie non indigene del macrozoobenthos e del necton in Campania. Michel Bariche was partially funded by the University Research Board of the American University of Beirut (DDF 103951/2592). Constantinos G. Georgiadis, Dimitra Lida Rammou, Paschalis Papadamakis and Sotiris Orfanidis were supported by the MSFD monitoring program. Sonia Smeraldo was supported by the MPA-Engage project, led by the Institute of Marine Sciences of the Spanish National Research Council and funded by the Interreg MED program. Evgeniia Karpova acknowledge that the publication of this article was in part carried out within the framework of the state assignment of the FRC IBSS “Patterns of Formation and Anthropogenic Transformation of Biodiversity and Bioresources of the Azov– Black Sea Basin and Other Regions of the World Ocean” (No. 121030100028-0). Elena Slynko’s work was carried out within the framework of a State Assignment no. 121051100109-1 of IBIW RAS. Manuela Falautano and Luca Castriota were supported by ISPRA citizen science campaigns for the monitoring of alien species through the dedicated institutional project ([email protected]). MarĂ­a Altamirano was supported by the project RUGULOPTERYX funded by FundaciĂłn Biodiversidad-Ministerio para la TransiciĂłn EcolĂłgica y el reto DemogrĂĄfico (Spain) and the project UMA20-FEDERJA-006 with support from the European Union and FEDER funds and Junta de AndalucĂ­a. Records provided by L. Mangialajo were collected in the framework of projects funded by the Pew Charitable Trust, by the European Commission (AFRIMED, http://afrimed-project.eu/, grant agreement N. 789059) and by the AcadĂ©mie 3 de l’UniversitĂ© CĂŽte d’Azur (projet CONVOST).Peer reviewe

    Unpublished Mediterranean and Black Sea records of marine alien, cryptogenic, and neonative species

    Get PDF
    To enrich spatio-temporal information on the distribution of alien, cryptogenic, and neonative species in the Mediterranean and the Black Sea, a collective effort by 173 marine scientists was made to provide unpublished records and make them open access to the scientific community. Through this effort, we collected and harmonized a dataset of 12,649 records. It includes 247 taxa, of which 217 are Animalia, 25 Plantae and 5 Chromista, from 23 countries surrounding the Mediterranean and the Black Sea. Chordata was the most abundant taxonomic group, followed by Arthropoda, Mollusca, and Annelida. In terms of species records, Siganus luridus, Siganus rivulatus, Saurida lessepsianus, Pterois miles, Upeneus moluccensis, Charybdis (Archias) longicollis, and Caulerpa cylindracea were the most numerous. The temporal distribution of the records ranges from 1973 to 2022, with 44% of the records in 2020–2021. Lethrinus borbonicus is reported for the first time in the Mediterranean Sea, while Pomatoschistus quagga, Caulerpa cylindracea, Grateloupia turuturu, and Misophria pallida are first records for the Black Sea; Kapraunia schneideri is recorded for the second time in the Mediterranean and for the first time in Israel; Prionospio depauperata and Pseudonereis anomala are reported for the first time from the Sea of Marmara. Many first country records are also included, namely: Amathia verticillata (Montenegro), Ampithoe valida (Italy), Antithamnion amphigeneum (Greece), Clavelina oblonga (Tunisia and Slovenia), Dendostrea cf. folium (Syria), Epinephelus fasciatus (Tunisia), Ganonema farinosum (Montenegro), Macrorhynchia philippina (Tunisia), Marenzelleria neglecta (Romania), Paratapes textilis (Tunisia), and Botrylloides diegensis (Tunisia).peer-reviewe

    Species distribution models as a tool to predict range expansion after reintroduction: A case study on Eurasian beavers (Castor fiber)

    No full text
    Species Distribution Models (SDMs) may provide important information for the follow-up phase of reintroduction operations by identifying the main areas most likely to be colonized by the reintroduced species. We used SDMs to identify the potential distribution of Eurasian beavers (Castor fiber) reintroduced to Serbia and Bosnia and Herzegovina in 2004–2006 after being historically driven to extinction by overhunting. Models were also used to carry out a gap analysis to assess the degree of protection granted by the national reserve networks to the potentially expanding population. Distances from hydrographic network, broadleaved forest, main watercourses and farmland were the main factors influencing model performance. We estimated that suitable habitat covers 14.0% (31,000 km2) of the whole study area. In Serbia, in 2004–2013 beavers expanded their range at a mean colonization speed of 70.9 ± 12.8 km/year (mean ± SD). Only 2.89% of and 9.72% of beaver's suitable habitat lie within the national network of protected areas of Bosnia and Serbia respectively. We detected new potential areas where beavers will likely settle in the near future, advising on where further monitoring should be carried out. We also identified low suitability areas to be targeted with appropriate management to improve their conditions as well as important regions falling outside reserve boundaries to which protection should be granted

    Protecting one, protecting both? Scale-dependent ecological differences in two species using dead trees, the rosalia longicorn beetle and the barbastelle bat

    No full text
    Organisms sharing the same habitats may differ in small-scale microhabitat requirements or benefit from different management. In this study, set in Italy, we focused on two species of high conservation value, the cerambycid beetle Rosalia alpina and the bat Barbastella barbastellus, which often share the same forest areas and in several cases the same individual trees. We compared the potential distribution and, at two spatial scales, the niches between such species. The predicted distributions largely overlapped between the beetle and the bat. The niches proved to be similar on a broad scale, yet not on the plot one. Compared with B.barbastellus, R.alpina tends to occur at lower altitude in more irradiated sites with lower canopy closure and uses shorter trees with wider diameters. B.barbastellus occurred more often in trees within forest or along its edges, whereas R.alpina lays eggs in trees found in clearings. B.barbastellus plots were more frequent in forest, R.alpina plots in forested pasture and open-shredded forest. Overall, exposure to sun influenced more critically site and tree selection by R.alpina, as a warm microclimate is essential for larval development. Although B.barbastellus reproduction may be favored by warmer roosting conditions, bats may also find such conditions in dense forest and in strongly irradiated cavities high up in tall trees that project above the canopy. We emphasize that subtle differences in the ecological requirements of syntopic taxa could be missed at broad scales, so multiple-scale assessment is always advisable.

    Do We Need to Use Bats as Bioindicators?

    No full text
    Bats show responses to anthropogenic stressors linked to changes in other ecosystem components such as insects, and as K-selected mammals, exhibit fast population declines. This speciose, widespread mammal group shows an impressive trophic diversity and provides key ecosystem services. For these and other reasons, bats might act as suitable bioindicators in many environmental contexts. However, few studies have explicitly tested this potential, and in some cases, stating that bats are useful bioindicators more closely resembles a slogan to support conservation than a well-grounded piece of scientific evidence. Here, we review the available information and highlight the limitations that arise in using bats as bioindicators. Based on the limited number of studies available, the use of bats as bioindicators is highly promising and warrants further investigation in specific contexts such as river quality, urbanisation, farming practices, forestry, bioaccumulation, and climate change. Whether bats may also serve as surrogate taxa remains a controversial yet highly interesting matter. Some limitations to using bats as bioindicators include taxonomical issues, sampling problems, difficulties in associating responses with specific stressors, and geographically biased or delayed responses. Overall, we urge the scientific community to test bat responses to specific stressors in selected ecosystem types and develop research networks to explore the geographic consistency of such responses. The high cost of sampling equipment (ultrasound detectors) is being greatly reduced by technological advances, and the legal obligation to monitor bat populations already existing in many countries such as those in the EU offers an important opportunity to accomplish two objectives (conservation and bioindication) with one action

    Shedding light on the effects of climate and anthropogenic pressures on the disappearance of Fagus sylvatica in the Italian lowlands: evidence from archaeo-anthracology and spatial analyses

    Get PDF
    Fagus sylvatica is one of the most representative trees of the European deciduous broadleaved forests, yet the impact of changing climatic conditions and anthropogenic pressures (anthromes) on its presence and distribution in the coastal and lowland areas of the Mediterranean Basin has long been overlooked. Here, we first analysed the local forest composition in two different time intervals (350-300 Before Current Era, BCE and 150-100 BCE) using charred wood remains from the Etruscan site of Cetamura (Tuscany, central Italy). Addition-ally, we reviewed all the relevant publications and the wood/charcoal data obtained from anthracological analysis in F. sylvatica, focusing on samples that date back to 4000 years before present, to better understand the drivers of beech presence and distribution during the Late Holocene (LH) in the Italian Peninsula. Then, we combined charcoal and spa-tial analyses to test the distribution of beech woodland at low elevation during LH in Italy and to evaluate the effect of climate change and/or anthrome on the disappearance of F. sylvatica from the lowlands. We collected 1383 charcoal fragments in Cetamura belonging to 21 woody taxa, with F. sylvatica being the most abun-dant species (28 %), followed by other broadleaved trees. We identified 25 sites in the Italian Peninsula with beech charcoals in the last 4000 years. Our spatial analyses showed a marked decrease in habitat suitability of F. sylvatica from LH to the present (ca. 48 %), particularly in the lowlands (0-300 m above sea level, a.s.l.) and at higher altitudes (>900 m a.s.l). In the lowland areas, where F. sylvatica has disappeared, climate had a more uniform effect on beech distribution patterns across the entire elevation range analysed, whereas climate + anthrome and anthrome alone in-fluenced 69 % and 84 % of the lowland areas, respectively. Our results highlight the advantage of combining different approaches, such as charcoal analysis and spatial analyses, to explore biogeographic questions about the past and current distribution of F. sylvatica, with important implications for today's forest management and conservation policies and practices, as well as for future research projects

    An African bat in Europe, Plecotus gaisleri: Biogeographic and ecological insights from molecular taxonomy and Species Distribution Models

    Get PDF
    Because of the high risk of going unnoticed, cryptic species represent a major challenge to biodiversity assessments, and this is particularly true for taxa that include many such species, for example, bats. Long-eared bats from the genus Plecotus comprise numerous cryptic species occurring in the Mediterranean Region and present complex phylogenetic relationships and often unclear distributions, particularly at the edge of their known ranges and on islands. Here, we combine Species Distribution Models (SDMs), field surveys and molecular analyses to shed light on the presence of a cryptic long-eared bat species from North Africa, Plecotus gaisleri, on the islands of the Sicily Channel, providing strong evidence that this species also occurs in Europe, at least on the islands of the Western Mediterranean Sea that act as a crossroad between the Old Continent and Africa. Species Distribution Models built using African records of P. gaisleri and projected to the Sicily Channel Islands showed that all these islands are potentially suitable for the species. Molecular identification of Plecotus captured on Pantelleria, and recent data from Malta and Gozo, confirmed the species' presence on two of the islands in question. Besides confirming that P. gaisleri occurs on Pantelleria, haplotype network reconstructions highlighted moderate structuring between insular and continental populations of this species. Our results remark the role of Italy as a bat diversity hotspot in the Mediterranean and also highlight the need to include P. gaisleri in European faunal checklists and conservation directives, confirming the usefulness of combining different approaches to explore the presence of cryptic species outside their known ranges—a fundamental step to informing conservation
    corecore