7 research outputs found

    Interventions for eye movement disorders due to acquired brain injury

    Get PDF
    This is a protocol for a Cochrane Review (Intervention). The objectives are as follows: The primary objective is to assess the effects of any intervention and determine the effect of timing of any intervention in the treatment of strabismus, gaze deficits and nystagmus due to acquired brain injury in order to align visual axes in primary and/or secondary gaze positions. The secondary objectives will be to determine whether in patients with eye movement disorders due to acquired brain injury, at what time point or period, using the following interventions and comparators. •Restitutive treatment is more effective than control, placebo, alternative treatment or no treatment in improving ocular alignment and/or motility. •Substitutive treatment is more effective than control, placebo, alternative treatment or no treatment in improving ocular alignment and/or motility. •Compensatory treatment is more effective than control, placebo, alternative treatment or no treatment in improving ocular alignment and/or motility. •Pharmacological treatment is more effective than control, placebo, alternative treatment or no treatment in improving ocular alignment and/or motility

    Interventions for eye movement disorders due to acquired brain injury

    Get PDF
    BACKGROUND: Acquired brain injury can cause eye movement disorders which may include: strabismus, gaze deficits and nystagmus, causing visual symptoms of double, blurred or 'juddery' vision and reading difficulties. A wide range of interventions exist that have potential to alleviate or ameliorate these symptoms. There is a need to evaluate the effectiveness of these interventions and the timing of their implementation. OBJECTIVES: We aimed to assess the effectiveness of any intervention and determine the effect of timing of intervention in the treatment of strabismus, gaze deficits and nystagmus due to acquired brain injury. We considered restitutive, substitutive, compensatory or pharmacological interventions separately and compared them to control, placebo, alternative treatment or no treatment for improving ocular alignment or motility (or both). SEARCH METHODS: We searched the Cochrane Central Register of Controlled Trials (CENTRAL) (containing the Cochrane Eyes and Vision Trials Register) (2017, Issue 5), MEDLINE Ovid, Embase Ovid, CINAHL EBSCO, AMED Ovid, PsycINFO Ovid, Dissertations & Theses (PQDT) database, PsycBITE (Psychological Database for Brain Impairment Treatment Efficacy), ISRCTN registry, ClinicalTrials.gov, Health Services Research Projects in Progress (HSRProj), National Eye Institute Clinical Studies Database and the World Health Organization (WHO) International Clinical Trials Registry Platform (ICTRP). The databases were last searched on 26 June 2017. No date or language restrictions were used in the electronic searches for trials. We manually searched the Australian Orthoptic Journal, British and Irish Orthoptic Journal, and ESA, ISA and IOA conference proceedings. We contacted researchers active in this field for information about further published or unpublished studies. SELECTION CRITERIA: We included randomised controlled trials (RCTs) of any intervention for ocular alignment or motility deficits (or both) due to acquired brain injury. DATA COLLECTION AND ANALYSIS: Two review authors independently selected studies and extracted data. We used standard methods expected by Cochrane. We employed the GRADE approach to interpret findings and assess the quality of the evidence. MAIN RESULTS: We found five RCTs (116 participants) that were eligible for inclusion. These trials included conditions of acquired nystagmus, sixth cranial nerve palsy and traumatic brain injury-induced ocular motility defects. We did not identify any relevant studies of restitutive interventions.We identified one UK-based trial of a substitutive intervention, in which botulinum toxin was compared with observation in 47 people with acute sixth nerve palsy. At four months after entry into the trial, people given botulinum toxin were more likely to make a full recovery (reduction in angle of deviation within 10 prism dioptres), compared with observation (risk ratio 1.19, 95% CI 0.96 to 1.48; low-certainty evidence). These same participants also achieved binocular single vision. In the injection group only, there were 2 cases of transient ptosis out of 22 participants (9%), and 4 participants out of 22 (18%) with transient vertical deviation; a total complication rate of 24% per injection and 27% per participant. All adverse events recovered. We judged the certainty of evidence as low, downgrading for risk of bias and imprecision. It was not possible to mask investigators or participants to allocation, and the follow-up between groups varied.We identified one USA-based cross-over trial of a compensatory intervention. Oculomotor rehabilitation was compared with sham training in 12 people with mild traumatic brain injury, at least one year after the injury. We judged the evidence from this study to be very low-certainty. The study was small, data for the sham training group were not fully reported, and it was unclear if a cross-over study design was appropriate as this is an intervention with potential to have a permanent effect.We identified three cross-over studies of pharmacological interventions for acquired nystagmus, which took place in Germany and the USA. These studies investigated two classes of pharmacological interventions: GABAergic drugs (gabapentin, baclofen) and aminopyridines (4-aminopyridines (AP), 3,4-diaminopyridine (DAP)). We judged the evidence from all three studies as very low-certainty because of small numbers of participants (which led to imprecision) and risk of bias (they were cross-over studies which did not report data in a way that permitted estimation of effect size).One study compared gabapentin (up to 900 mg/day) with baclofen (up to 30 mg/day) in 21 people with pendular and jerk nystagmus. The follow-up period was two weeks. This study provides very low-certainty evidence that gabapentin may work better than baclofen in improving ocular motility and reducing participant-reported symptoms (oscillopsia). These effects may be different in pendular and jerk nystagmus, but without formal subgroup analysis it is unclear if the difference between the two types of nystagmus was chance finding. Quality of life was not reported. Ten participants with pendular nystagmus chose to continue treatment with gabapentin, and one with baclofen. Two participants with jerk nystagmus chose to continue treatment with gabapentin, and one with baclofen. Drug intolerance was reported in one person receiving gabapentin and in four participants receiving baclofen. Increased ataxia was reported in three participants receiving gabapentin and two participants receiving baclofen.One study compared a single dose of 3,4-DAP (20 mg) with placebo in 17 people with downbeat nystagmus. Assessments were made 30 minutes after taking the drug. This study provides very low-certainty evidence that 3,4-DAP may reduce the mean peak slow-phase velocity, with less oscillopsia, in people with downbeat nystagmus. Three participants reported transient side effects of minor perioral/distal paraesthesia.One study compared a single dose of 4-AP with a single dose of 3,4-DAP (both 10 mg doses) in eight people with downbeat nystagmus. Assessments were made 45 and 90 minutes after drug administration. This study provides very low-certainty evidence that both 3,4-DAP and 4-AP may reduce the mean slow-phase velocity in people with downbeat nystagmus. This effect may be stronger with 4-AP. AUTHORS' CONCLUSIONS: The included studies provide insufficient evidence to inform decisions about treatments specifically for eye movement disorders that occur following acquired brain injury. No information was obtained on the cost of treatment or measures of participant satisfaction relating to treatment options and effectiveness. It was possible to describe the outcome of treatment in each trial and ascertain the occurrence of adverse events

    The Potential of Molecular Indicators of Plant Virus Infection: Are Plants Able to Tell Us They Are Infected?

    No full text
    To our knowledge, there are no reports that demonstrate the use of host molecular markers for the purpose of detecting generic plant virus infection. Two approaches involving molecular indicators of virus infection in the model plant Arabidopsis thaliana were examined: the accumulation of small RNAs (sRNAs) using a microfluidics-based method (Bioanalyzer); and the transcript accumulation of virus-response related host plant genes, suppressor of gene silencing 3 (AtSGS3) and calcium-dependent protein kinase 3 (AtCPK3) by reverse transcriptase-quantitative PCR (RT-qPCR). The microfluidics approach using sRNA chips has previously demonstrated good linearity and good reproducibility, both within and between chips. Good limits of detection have been demonstrated from two-fold 10-point serial dilution regression to 0.1 ng of RNA. The ratio of small RNA (sRNA) to ribosomal RNA (rRNA), as a proportion of averaged mock-inoculation, correlated with known virus infection to a high degree of certainty. AtSGS3 transcript decreased between 14- and 28-days post inoculation (dpi) for all viruses investigated, while AtCPK3 transcript increased between 14 and 28 dpi for all viruses. A combination of these two molecular approaches may be useful for assessment of virus-infection of samples without the need for diagnosis of specific virus infection

    A Prospective Profile of Visual Field Loss following Stroke: Prevalence, Type, Rehabilitation, and Outcome

    Get PDF
    Aims. To profile site of stroke/cerebrovascular accident, type and extent of field loss, treatment options, and outcome. Methods. Prospective multicentre cohort trial. Standardised referral and investigation protocol of visual parameters. Results. 915 patients were recruited with a mean age of 69 years (SD 14). 479 patients (52%) had visual field loss. 51 patients (10%) had no visual symptoms. Almost half of symptomatic patients (n=226) complained only of visual field loss: almost half (n=226) also had reading difficulty, blurred vision, diplopia, and perceptual difficulties. 31% (n=151) had visual field loss as their only visual impairment: 69% (n=328) had low vision, eye movement deficits, or visual perceptual difficulties. Occipital and parietal lobe strokes most commonly caused visual field loss. Treatment options included visual search training, visual awareness, typoscopes, substitutive prisms, low vision aids, refraction, and occlusive patches. At followup 15 patients (7.5%) had full recovery, 78 (39%) had improvement, and 104 (52%) had no recovery. Two patients (1%) had further decline of visual field. Patients with visual field loss had lower quality of life scores than stroke patients without visual impairment. Conclusions. Stroke survivors with visual field loss require assessment to accurately define type and extent of loss, diagnose coexistent visual impairments, and offer targeted treatment

    A global continuous plankton recorder programme

    No full text
    Plankton are the main food source in the majority of marine ecosystems and have a crucial role in climate change through primary production and the export of carbon to the deep ocean. Understanding how ocean biology and biogeochemical cycles contribute and respond to climate and other global change is a major challenge of high significance for the future of mankind. Given their importance it is a major concern that, with the exception of data collected by the Continuous Plankton Recorder (CPR) survey, our knowledge of plankton at ocean scales and over time is still rudimentary. Using ships of opportunity, the CPR survey has sampled the plankton for more than 75 years in the North Atlantic, aided more recently by sister surveys in Southern Ocean, North Pacific and Australasian waters. Monitoring plankton variability over large areas of oceanic and coastal water with the CPR is efficient and cost effective and is a powerful, proven tool for detecting and predicting oceanic impacts of both global and climate change. There is an urgent need to improve global coverage of plankton and provide data for modelling. To address this need we propose the development and implementation of an integrated and appropriately funded global CPR programme linked to SOOP/VOS. Our vision is to build regional surveys with common standards for sampling, analysis, data processing and sample storage that generate compatible and freely exchangeable data. It is envisaged that the resulting global network, of preferably instrumented CPR routes, would be closely associated with other traditional and new plankton sampling and analysing technologies, plus remote sensing and the Global Tracking Network (GTN). To develop this network it is proposed that SAHFOS should have a central role as a ‘Centre of Excellence’ for coordination, training and quality control, as well as the production of indicators, habitat niche modelling and other global outreach products
    corecore