52 research outputs found
Interaction of Pattern Recognition Receptors with Mycobacterium Tuberculosis.
Tuberculosis (TB) is considered a major worldwide health problem with 10 million new cases diagnosed each year. Our understanding of TB immunology has become greater and more refined since the identification of Mycobacterium tuberculosis (MTB) as an etiologic agent and the recognition of new signaling pathways modulating infection. Understanding the mechanisms through which the cells of the immune system recognize MTB can be an important step in designing novel therapeutic approaches, as well as improving the limited success of current vaccination strategies. A great challenge in chronic disease is to understand the complexities, mechanisms, and consequences of host interactions with pathogens. Innate immune responses along with the involvement of distinct inflammatory mediators and cells play an important role in the host defense against the MTB. Several classes of pattern recognition receptors (PRRs) are involved in the recognition of MTB including Toll-Like Receptors (TLRs), C-type lectin receptors (CLRs) and Nod-like receptors (NLRs) linked to inflammasome activation. Among the TLR family, TLR1, TLR2, TLR4, and TLR9 and their down-stream signaling proteins play critical roles in the initiation of the immune response in the pathogenesis of TB. The inflammasome pathway is associated with the coordinated release of cytokines such as IL-1β and IL-18 which also play a role in the pathogenesis of TB. Understanding the cross-talk between these signaling pathways will impact on the design of novel therapeutic strategies and in the development of vaccines and immunotherapy regimes. Abnormalities in PRR signaling pathways regulated by TB will affect disease pathogenesis and need to be elucidated. In this review we provide an update on PRR signaling during M. tuberculosis infection and indicate how greater knowledge of these pathways may lead to new therapeutic opportunities
Proteomic analysis of the action of the Mycobacterium ulcerans toxin mycolactone: targeting host cells cytoskeleton and collagen
Buruli ulcer (BU) is a neglected tropical disease caused by Mycobacterium ulcerans. The tissue damage characteristic of BU lesions is known to be driven by the secretion of the potent lipidic exotoxin mycolactone. However, the molecular action of mycolactone on host cell biology mediating cytopathogenesis is not fully understood. Here we applied two-dimensional electrophoresis (2-DE) to identify the mechanisms of mycolactone's cellular action in the L929 mouse fibroblast proteome. This revealed 20 changed spots corresponding to 18 proteins which were clustered mainly into cytoskeleton-related proteins (Dync1i2, Cfl1, Crmp2, Actg1, Stmn1) and collagen biosynthesis enzymes (Plod1, Plod3, P4ha1). In line with cytoskeleton conformational disarrangements that are observed by immunofluorescence, we found several regulators and constituents of both actin- and tubulin-cytoskeleton affected upon exposure to the toxin, providing a novel molecular basis for the effect of mycolactone. Consistent with these cytoskeleton-related alterations, accumulation of autophagosomes as well as an increased protein ubiquitination were observed in mycolactone-treated cells. In vivo analyses in a BU mouse model revealed mycolactone-dependent structural changes in collagen upon infection with M. ulcerans, associated with the reduction of dermal collagen content, which is in line with our proteomic finding of mycolactone-induced down-regulation of several collagen biosynthesis enzymes. Our results unveil the mechanisms of mycolactone-induced molecular cytopathogenesis on exposed host cells, with the toxin compromising cell structure and homeostasis by inducing cytoskeleton alterations, as well as disrupting tissue structure, by impairing the extracellular matrix biosynthesis.The research leading to these results has received funding from the European Community's Seventh Framework Program (FP7/2007-2013) under grant agreement Nu 241500 (BuruliVac), from Fundacao Calouste Gulbenkian and from Projeto Estrategico - LA 26 - 2013-2014 (PEst-C/SAU/LA0026/2013). JBG, TGM and AGF had a personal grant from the Portuguese Science and Technology Foundation (FCT) (SFRH/BD/33573/2009, SFRH/BD/41598/2007 and SFRH/BPD/68547/2010, respectively). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript
Age-specific mortality patterns in Central Mozambique during and after the end of the Civil War
<p>Abstract</p> <p>Background</p> <p>In recent years, vigorous debate has developed concerning how conflicts contribute to the spread of infectious diseases, and in particular, the role of post-conflict situations in the epidemiology of HIV/AIDS. This study details the age-specific mortality patterns among the population in the central provincial capital of Beira, Mozambique, during and after the Mozambican civil war which ended in 1992.</p> <p>Methods</p> <p>Data was collected from the death register at Beira's Central Hospital between 1985 and 2003 and descriptively analyzed.</p> <p>Results</p> <p>The data show two distinct periods: before and after the peace agreements in 1992. Before 1992 (during the civil war), the main impact of mortality was on children below 5 years of age, including still births, accounting for 58% of all deaths. After the war ended in 1992, the pattern shifted dramatically and rapidly to the 15-49 year old age group which accounted for 49% of all deaths by 2003.</p> <p>Conclusions</p> <p>As under-5 mortality rates were decreasing at the end of the conflict, rates for 24-49 year old adults began to dramatically increase due to AIDS. This study demonstrates that strategies can be implemented during conflicts to decrease mortality rates in one vulnerable population but post-conflict dynamics can bring together other factors which contribute to the rapid spread of other infectious diseases in other vulnerable populations.</p
Sustained activation of mTORC1 in macrophages increases AMPKα-dependent autophagy to maintain cellular homeostasis
Role of glycosyltransferases modifying type B flagellin of emerging hypervirulent Clostridium difficile lineages and their impact on motility and biofilm formation
Clostridium difficile is the principal cause of nosocomial infectious diarrhea worldwide. The pathogen modifies its flagellin with either a type A or type B O-linked glycosylation system, which has a contributory role in pathogenesis. We study the functional role of glycosyltransferases modifying type B flagellin in the 023 and 027 hypervirulent C. difficile lineages by mutagenesis of five putative glycosyltransferases and biosynthetic genes. We reveal their roles in the biosynthesis of the flagellin glycan chain and demonstrate that flagellar post-translational modification affects motility and adhesion-related bacterial properties of these strains. We show that the glycosyltransferases 1 and 2 (GT1 and GT2) are responsible for the sequential addition of a GlcNAc and two rhamnoses, respectively, and that GT3 is associated with the incorporation of a novel sulfonated peptidyl-amido sugar moiety whose structure is reported in our accompanying paper (Bouché, L., Panico, M., Hitchen, P., Binet, D., Sastre, F., Faulds-Pain, A., Valiente, E., Vinogradov, E., Aubry, A., Fulton, K., Twine, S., Logan, S. M., Wren, B. W., Dell, A., and Morris, H. R. (2016) J. Biol. Chem. 291, 25439–25449). GT2 is also responsible for methylation of the rhamnoses. Whereas type B modification is not required for flagellar assembly, some mutations that result in truncation or abolition of the glycan reduce bacterial motility and promote autoaggregation and biofilm formation. The complete lack of flagellin modification also significantly reduces adhesion of C. difficile to Caco-2 intestinal epithelial cells but does not affect activation of human TLR5. Our study advances our understanding of the genes involved in flagellar glycosylation and their biological roles in emerging hypervirulent C. difficile strains
Polymorphisms in autophagy genes and susceptibility to tuberculosis
Contains fulltext :
109084.pdf (publisher's version ) (Open Access)Recent data suggest that autophagy is important for intracellular killing of Mycobacterium tuberculosis, and polymorphisms in the autophagy gene IRGM have been linked with susceptibility to tuberculosis (TB) among African-Americans, and with TB caused by particular M. tuberculosis genotypes in Ghana. We compared 22 polymorphisms of 14 autophagy genes between 1022 Indonesian TB patients and 952 matched controls, and between patients infected with different M. tuberculosis genotypes, as determined by spoligotyping. The same autophagy polymorphisms were studied in correlation with ex-vivo production of TNF, IL-1beta, IL-6, IL-8, IFN-gamma and IL-17 in healthy volunteers. No association was found between TB and polymorphisms in the genes ATG10, ATG16L2, ATG2B, ATG5, ATG9B, IRGM, LAMP1, LAMP3, P2RX7, WIPI1, MTOR and ATG4C. Associations were found between polymorphisms in LAMP1 (p = 0.02) and MTOR (p = 0.02) and infection with the successful M. tuberculosis Beijing genotype. The polymorphisms examined were not associated with M. tuberculosis induced cytokines, except for a polymorphism in ATG10, which was linked with IL-8 production (p = 0.04). All associations found lost statistical significance after correction for multiple testing. This first examination of a broad set of polymorphisms in autophagy genes fails to show a clear association with TB, with M. tuberculosis Beijing genotype infection or with ex-vivo pro-inflammatory cytokine production
The role of autophagy in host defence against Mycobacterium tuberculosis infection.
Item does not contain fulltextAutophagy is a vital homeostatic process triggered by starvation and other cellular stresses, in which cytoplasmatic cargo is targeted for degradation in specialized structures termed autophagosomes. Autophagy is involved in nutrient regeneration, protein and organelle degradation, but also in clearance of intracellular pathogens such as Mycobacterium tuberculosis, the causative agent of tuberculosis. Recent studies suggest that induction of autophagy in macrophages is an effective mechanism to enhance intracellular killing of M. tuberculosis, and that the ability of the pathogen to inhibit this process is of paramount importance for its survival. Patient studies have shown genetic associations between tuberculosis and the autophagy gene IRGM, as well as with several genes indirectly involved in autophagy. In this review we will discuss the complex interplay between M. tuberculosis and autophagy, as well as the effect of polymorphisms in autophagy-related genes on susceptibility to tuberculosis.1 september 201
Lack of Evidence of Myocardial Damage in Children with Plasmodium falciparum Severe and Complicated Malaria from an Endemic Area for Endomyocardial Fibrosis
- …
