508 research outputs found

    The cost of Bitcoin mining has never really increased

    Get PDF
    The Bitcoin network is burning a large amount of energy for mining. In this paper we estimate the lower bound for the global energy cost for a period of ten years from 2010, taking into account changing oil costs, improvements in hashing technologies and hashing activity. Despite a ten-billion-fold increase in hashing activity and a ten-million-fold increase in total energy consumption, we find the cost relative to the volume of transactions has not increased nor decreased since 2010. This is consistent with the perspective that, in order to keep a the Blockchain system secure from double spending attacks, the proof or work must cost a sizable fraction of the value that can be transferred through the network. We estimate that in the Bitcoin network this fraction is of the order of 1%.Comment: 16 pages, 6 figure

    Remarks on Cultural Transfer from an LLD

    Get PDF

    Automatic Look-Up Table Based Real-Time Phase Unwrapping for Phase Measuring Profilometry and Optimal Reference Frequency Selection

    Get PDF
    For temporal phase unwrapping in phase measuring profilometry, it has recently been reported that two phases with co-prime frequencies can be absolutely unwrapped using a look-up table; however, frequency selection and table construction has been performed manually without optimization. In this paper, a universal phase unwrapping method is proposed to unwrap phase flexibly and automatically by using geometric analysis, and thus we can programmatically build a one-dimensional or two-dimensional look-up table for arbitrary two co-prime frequencies to correctly unwrap phases in real time. Moreover, a phase error model related to the defocus effect is derived to figure out an optimal reference frequency co-prime to the principal frequency. Experimental results verify the correctness and computational efficiency of the proposed method

    Universal Phase Unwrapping for Phase Measuring Profilometry Using Geometry Analysis

    Get PDF
    Traditionally temporal phase unwrapping for phase measuring profilometry needs to employ the phase computed from unit-frequency patterned images; however, it has recently been reported that two phases with co-prime frequencies can be absolutely unwrapped each other. However, a manually man-made look-up table for two known frequencies has to be used for correctly unwrapping phases. If two co-prime frequencies are changed, the look-up table has to be manually rebuilt. In this paper, a universal phase unwrapping algorithm is proposed to unwrap phase flexibly and automatically. The basis of the proposed algorithm is converting a signal-processing problem into a geometric analysis one. First, we normalize two wrapped phases such that they are of the same needed slope. Second, by using the modular operation, we unify the integer-valued difference of the two normalized phases over each wrapping interval. Third, by analyzing the properties of the uniform difference mathematically, we can automatically build a look-up table to record the corresponding correct orders for all wrapping intervals. Even if the frequencies are changed, the look-up table will be automatically updated for the latest involved frequencies. Finally, with the order information stored in the look-up table, the wrapped phases can be correctly unwrapped. Both simulations and experimental results verify the correctness of the proposed algorithm

    A sclerosing hemangioma of the liver

    Get PDF

    MOMENT RESISTANCE PERFORMANCE OF LARCH LAMINATED TIMBER BEAM-COLUMN JOINTS REINFORCED WITH CFRP

    Get PDF
    This study evaluates the moment resisting capacity of the drift pin larch beam-column joint with slotted-in steel plates of larch laminated timber. It is reinforced with carbon fiber reinforced plastic (CFRP) to suppress the brittle fracture of the beam-column joint and improve the joint capacity using larch laminated timber, a wood material manufactured by multi-layering of timber as a structural member of heavy timber.The average maximum moment capacity of the control specimen was 16.9 kN·m and the average maximum moments of the Type-A (volume ratio of joint reinforced with CFRP: 3.6%) and Type-B (volume ratio of joint reinforced with CFRP: 5.4%) were increased by 46% and 62%, respectively, compared to that of the control specimen. The capacity of the joint, such as the average yield capacity, ultimate moment capacity, and ductility ratio, of the control, Type-A, and Type-B specimens increased as the reinforcement ratio of the CFRP increased. For the failure mode of the control specimen, splitting failure occurred in both the column and beam members in the end distance direction. However, the splitting failure did not occur in the beam member due to the improvement of the joint and ductility of the specimens reinforced with the CFRP. The Type-A specimen had improved joint capacity and ductility compared to the control specimen; however, brittle failure occurred owing to the external force exceeding the joint capacity. However, in some of the Type-B specimens, the splitting failure did not occur in the column and beam members due to the CFRP reinforcement. Particularly, the Type-B3 specimen exhibited ductility

    Interferometric detection of prostate specific antigen based on enzyme immunoassay

    Get PDF
    AbstractInterferometric detection of Prostate-specific antigen (PSA) based on enzyme immunoassay are investigated. Refractive index changes of substrate are measured for PSA detection. Michelson scheme of optical interferometer was used so as to be applicable to a disposable fluidic chip. When interferometer is used for the measurements of refractive index changes, the detection is over 8 times more sensitive than that of absorbance changes for the same amount of target protein

    Readout-segmented echo-planar imaging in diffusion-weighted mr imaging in breast cancer: comparison with single-shot echo-planar imaging in image quality

    Get PDF
    Objective: The purpose of this study was to compare the image quality of standard single-shot echo-planar imaging (ss-EPI) and that of readout-segmented EPI (rs-EPI) in patients with breast cancer. Materials and Methods: Seventy-one patients with 74 breast cancers underwent both ss-EPI and rs-EPI. For qualitative comparison of image quality, three readers independently assessed the two sets of diffusion-weighted (DW) images. To evaluate geometric distortion, a comparison was made between lesion lengths derived from contrast enhanced MR (CE-MR) images and those obtained from the corresponding DW images. For assessment of image parameters, signal-to-noise ratio (SNR), lesion contrast, and contrast-to-noise ratio (CNR) were calculated. Results: The rs-EPI was superior to ss-EPI in most criteria regarding the qualitative image quality. Anatomical structure distinction, delineation of the lesion, ghosting artifact, and overall image quality were significantly better in rs-EPI. Regarding the geometric distortion, lesion length on ss-EPI was significantly different from that of CE-MR, whereas there were no significant differences between CE-MR and rs-EPI. The rs-EPI was superior to ss-EPI in SNR and CNR. Conclusion: Readout-segmented EPI is superior to ss-EPI in the aspect of image quality in DW MR imaging of the breast

    ZnO nanoparticle growth on single-walled carbon nanotubes by atomic laye r deposition and a consequent lifetime elongation of nanotube field emission emission

    Get PDF
    ZnO nanoparticles were grown on single-walled carbon nanotubes (SWNTs) by atomic layer deposition using diethylzinc (DEZ) and water. The athors discuss that, because of chemical inertness of nanotubes to DEZ and water molecules, such nanoparticles are not likely to grow on the wall of clean and perfect nanotubes. Rather, the growth of ZnO nanoparticles should be attributed to imperfection of nanotubes, such as defects and carbonaceous impurities. Lifetime of field emission from SWNTs with the ZnO nanoparticles is 2.5 times longer than that from the as-grown nanotubes. It is thought that the protection of the defects or impurities by ZnO nanoparticles mainly contributed to the improvement of the field emission lifetime from SWNTs.open262
    corecore