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Automatic look-up table based real-time phase
unwrapping for phase measuring profilometry
and optimal reference frequency selection

JIANWEN SONG,1 DANIEL L. LAU,2 YO-SUNG HO,3 AND KAI LIU1,*

1School of Electrical Engineering and Information, Sichuan University, Chengdu, 610065, China
2Department of Electrical Engineering, University of Kentucky, Lexington, KY, 40507, USA
3School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology,
Gwangju, 500-712, South Korea
*Corresponding author: kailiu@scu.edu.cn

Abstract: For temporal phase unwrapping in phase measuring profilometry, it has recently
been reported that two phases with co-prime frequencies can be absolutely unwrapped using a
look-up table; however, frequency selection and table construction has been performed manually
without optimization. In this paper, a universal phase unwrapping method is proposed to unwrap
phase flexibly and automatically by using geometric analysis, and thus we can programmatically
build a one-dimensional or two-dimensional look-up table for arbitrary two co-prime frequencies
to correctly unwrap phases in real time. Moreover, a phase error model related to the defocus
effect is derived to figure out an optimal reference frequency co-prime to the principal frequency.
Experimental results verify the correctness and computational efficiency of the proposed method.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Phase measuring profilometry (PMP) is high speed and high accuracy three-dimensional (3-
D) scanning technique where high, spatial-frequency, sinusoidal patterns are employed to
suppress errors caused by sensor noise as well as projector/camera nonlinearities, but in order to
avoid ambiguities in phase reconstruction, high-frequency phases must be correctly unwrapped.
Compared with spatial phase unwrapping [1–4], temporal phase unwrapping [5–8] enjoys robust
performance without suffering from phase discontinuities, phase jumps, and other distortions [9],
but traditional temporal phase unwrapping methods [5, 7, 10, 11] typically need multi-frequency
patterns, starting from unit-frequency. Although this procedure is very robust, the added patterns
increase the total scan time as well as require more computation.
To shorten scan times and reduce computational complexity, two-frequency temporal phase

unwrapping [12–16] has been developed. Long et al. [13] proposed a method for flexibly selecting
wavelengths. Li et al. [14] proposed an optimal frequency selection algorithm for micro Fourier
transform profilometry. Servin et al. [17] derived a phase-sum method to increase the signal-to-
noise ratio (SNR). Li et al. [6] documented how frequencies could suppress noise and how to
derive optimal frequencies. Hyun et al. [18] used geometric constraints to improve traditional
two-frequency phase unwrapping. Now while all of above two-wavelength and two-frequency
approaches have their benefits, they either sacrifice the SNR or need unit-frequency phase as a
reference.
Using number theory, phase unwrapping with two co-prime frequencies was proposed by

Gushov and Solodkin [19] who showed that only one reference phase map with a reference
frequency co-prime to the principal frequency is needed to unambiguously unwrap a principal
phase map. This approach was later simplified by Zhong et al. [20] and Ding et al. [21, 22]
who established look-up tables (LUT) to simplify processing; however, the process of phase
unwrapping needs a hand-made LUT storing the corresponding orders of wraps between the
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reference patterns and the principal patterns. Once the principal frequency or/and the reference
frequency is/are changed, the LUT has to be manually rebuilt.

In this paper first motivated by Ding et al. [21,22] for two co-prime frequencies, we propose to
unwrap phases in real time through a one-dimensional (1-D) LUT that is derived from a geometric
model bridging the orders of wrapped phases. When frequencies are changed, this 1-D LUT
will, therefore, be automatically updated. In order to further speed up phase unwrapping, this
paper further proposes a two-dimensional (2-D) LUT that is derived based on the 1-D geometric
model. Lastly, this paper proposes a means for setting the optimal reference frequency based on
error analysis. Experimental results verify the correctness of the proposed method, our ability to
perform reconstruction in real-time.

2. Phase measuring profilometry with phase unwrapping

Following the notation of Liu et al. [23] for PMP scanning, the projected sinusoid patterns are
coded according to:

Ipn (xp, yp) = Ap + Bp cos
[
2π

(
f
yp

H
− n

N

)]
, (1)

where Ipn is the pattern intensity of a projector pixel at column and row coordinate (xp, yp), Ap

and Bp are two constants such that Ap ≥ Bp , f is the integer valued spatial frequency, H is the
height of a projector’s spatial resolution in rows, and n is the index of a phase shift with N (≥ 3)
total phase shifts, respectively. After one pattern is projected onto a scanned object, a camera
immediately captures an image and the patterned image, denoted as Icn , is modeled according to:

Icn (xc, yc) = Ac (xc, yc) + Bc (xc, yc) cos
[
φ (xc, yc) − 2πn

N

]
, (2)

where Ac , Bc , and φ are direct component, intensity modulation, and phase, respectively, at
camera coordinates (xc, yc). Note that Icn , Ac , Bc , and φ are functions of (xc, yc) which,
henceforth, will be removed for simplifying notation.

The intensity of modulation, Bc , is a measure of the signal strength of the projected sinusoid,
which is commonly used for removing shadow noise [23], and is computed according to:

Bc =
2
N

√√√√[
N−1∑
n=0

Icn sin
(
2πn
N

)]2

+

[
N−1∑
n=0

Icn cos
(
2πn
N

)]2

. (3)

The phase term, φ, is the phase of the projected sinusoid (measured spatially across the projector’s
vertical field of view), which is used for 3-D reconstruction, is computed according to:

φ = tan−1


∑N−1

n=0 Icn sin
(

2πn
N

)
∑N−1

n=0 Icn cos
(

2πn
N

)  , (4)

which is mapped into [0, 2π] according to our calibration strategy.
In practice, we set f > 1 in Eq. (1) to suppress various errors [24] but, consequentially, results

in φ, computed by Eq. (4), to be exactly wrapped by the factor f and now needs to be unwrapped
to cancel ambiguities. For wrapped φ shown in Fig. 1 (a), we follow the notation of Ding et
al [21] and define the integer-valued k ∈ [0, f − 1], shown in Fig. 1(b), as the phase index such
that the absolute phase, Φ, can be correctly unwrapped according to:

Φ =
φ + 2kπ

f
, (5)
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Fig. 1. Two forms of wrapped phasesFig. 1. The procedure of phase unwrapping: (a) Wrapped phase; (b) Order of wraps; (c)
Unwrapped phase.

as shown in Fig. 1(c). In order to temporally unwrap φ, we can employ a reference phase denoted
as φr and generated by another group of PMP patterns with a different frequency f r . The
reference frequency, f r , needs to be a co-prime number to the wraps of φ [21, 22]. In Fig. 2(a),
the dash-dot line is φr with wraps of f r = 3. for example. Note that φ and φr can actually
unwrap each other, and we call them as ‘phase’ and ‘reference phase’, respectively.
From Fig. 2(a) and for the originally computed φ and φr , it is difficult to visually figure out

their relationship; however from the view of 1-D geometry, we know the equation for the curve
of φ is defined according to:

φ (x) = 2π
f
L

[
(x)mod

(
L
f

)]
= 2π

[(
f

x
L

)
mod (1)

]
= 2π ( f t − b f tc) , (6)

where integer x is in the range [0, L − 1], integer t is equal to x/L, and mod(·) and b·c are the
mathematical modulo and floor operations, respectively. Similarly, φr is defined according to:

φr (x) = 2π ( f r t − b f r tc) . (7)

With rescaling φ and φr by

φ̂ (x) = f r

2π
φ (x) = f r ( f t − b f tc) (8)

and

φ̂r (x) = f
2π
φr (x) = f ( f r t − b f r tc) , (9)

respectively, we then have the difference between φ̂ and φ̂r defined according to:

∆ (x) = φ̂r (x) − φ̂ (x) = f r b f tc − f b f r tc , (10)

which are integers over [− f r+1, f −1] as shown in Fig. 2(b). For each interval [kL/ f , (k+1)L/ f )
with k = 0, 1, · · · , f − 1, the values of ∆(x) may look different, but they are equivalent and can
be unified by

∆̂ (x) = [∆ (x)]mod ( f ) = ( f r b f tc)mod ( f ) = (k f r )mod ( f ) , (11)

for k = 0, 1, · · · , f − 1, as shown in Fig. 2(c).
For Eq. (11), although we can solve k from ∆̂(x) by using analytical mathematical methods,

e.g. Chinese remainder theorem [7], an alternative method, i.e. a LUT-based solution, is more
efficient in practice. Two automatic LUT-based, i.e. 1-D and 2-D, strategies are proposed in this
paper. Both are built with Eq. (11).
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Fig. 1. Two forms of wrapped phasesFig. 2. The relationship between φ̂ and φ̂r : (a) φ(x) and φr (x); (b) ∆(x); (c) ∆̂(x).

2.1. One-dimensional look-up table

With known f and f r , a 1-D LUT with length, f , can be automatically built directly from Eq. (11)
according to:

LUT [(k f r )mod ( f )] = k, (12)

for k = 0, 1, · · · , f − 1. For example, if f = 5 and f r = 3, the corresponding LUT is shown in
Table 1. With ∆̂(x) computed via Eq. (11) and the LUT previously built by using Eq. (12), we
can access k by looking up the LUT immediately as

k = LUT
[
∆̂(x)

]
, (13)

and φ is finally unwrapped by using Eq. (5). Again, once f or f r is changed, we can automatically
update the LUT by using Eq. (12), and don’t need to manually fill out a table.

Table 1. A 1-D LUT with f = 5 and f r = 3

(k f r )mod ( f ) 0 1 2 3 4

k 0 2 4 1 3

2.2. Two-dimensional look-up table

By observing Fig. 2(a), we note that each combination of fringe orders, for φ and φr , corresponds
to phases in different ranges. For example, Fig. 3(a) shows wrapped phases for f = 5 and f r = 3
from the view of 1-D geometry. The wrapped phases can be classified into 7 areas, and each area
is a fixed combination of fringe orders. By setting φr versus φ as shown in Fig. 3(b), there are 7
parallel lines relating to wrapped phases of 7 areas in Fig. 3(a), i.e., the ranges of the combination
of two wrapped phases in these 7 areas are different. Then, by deriving fringe orders from
wrapped phases directly, we eliminate the need for calculating the phase difference as well as the
modulo operation. Thus, we can establish a 2-D LUT to further speed up phase unwrapping.
As shown in Fig. 3(b), the intercept of each line, bi , is defined according to:

bi = φ −
f
f r
φr, (14)

where i is an integer-valued index for each line with range of [1, f + f r − 1]. With Eqs. (8)
and (9), we rescale φ and φr into φ̂ ∈ [0, f r ] and φ̂r ∈ [0, f ], respectively. As the relationships
among rescaled intercept b̂i and fringe orders listed in Table 2, we have

b̂i = φ̂ − φ̂r, (15)
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Fig. 1. Two forms of wrapped phasesFig. 3. Two forms of wrapped phases: (a) Wrapped phases from the view of 1-D geometry;
(b) Relationship between two wrapped phases using phase value as coordinate.

Table 2. Rescaled Intercept and Its Corresponding Fringe Order

b̂i 2 1 0 -1 -2 -3 -4

(k, kr ) (1, 1) (2, 3) (0, 0) (1, 2) (2, 4) (0, 1) (1,3)

which is negative to ∆(x) in Eq. (10). For any unknown fringe orders of wrapped phases, we use
Eq. (15) to compute rescaled intercepts and, similar to Eq. (11), unify the rescaled intercepts as
indices to access fringe orders.

0 L/5 2L/5 3L/5 4L/5 L

L

2L/3

L/3

0 0

1

2

3

4

Fig. 4. A 2-D LUT with f = 5 and f r = 3.

With Eq. (15) and the 1-D LUT built by using Eq. (12), we can enumerate all combinations of
φ and φr over [0, 2π]. Since the indices of a LUT need to be integers, we normalize φ and φr by

φ̃ = round
(

Lφ
2π

)
(16)

and
φ̃r = round

(
Lφr

2π

)
, (17)
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where L is the length of captured patterns along the scanned direction. The ranges of φ̃ and φ̃r
are in [0, L − 1]. Thus for known f r , f and L, a 2-D LUT with size L × L is automatically built
according to:

LUT[m, n] = 1DLUT
{[

round
(

m f − n f r

L

)]
mod ( f )

}
, (18)

where m ∈ [0, L−1] and n ∈ [0, L−1] are indices of the 2-D LUT and the 1-D LUT is established
by using Eq. (12). Figure 4 shows an established 2-D LUT with f = 5 and f r = 3.

2.3. Phase unwrapping algorithms

Our proposed phase unwrapping, using the 1-D and 2-D LUTs, is summarized by Algorithms 1
and 2, respectively.

Algorithm 1 Proposed phase unwrapping using a 1-D LUT
Input:

The principal frequency, f ;
The reference frequency, f r ;
The captured patterns, I cn ;

Output:
The absolute phase, Φ;

1: Build a 1-D LUT with f and f r by using Eq. (11);
2: For φ and φr computed by using Eq. (4), rescale them to obtain φ̂ and φ̂r by using Eqs. (8) and (9);
3: Compute the difference between φ̂ and φ̂r by using Eq. (10) and then unify the difference by using Eq. (11) to obtain
∆̂(x);

4: Use the values of ∆̂(x) as indices to access orders, k, of wraps stored in the 1-D LUT built in Step 1;
5: With the orders k, finally obtain Φ by using Eq. (5);
6: If f or f r is not changed, repeat Steps 2-5 for incoming I cn ; otherwise Step 1 is needed.

Algorithm 2 Proposed phase unwrapping using a 2-D LUT
Input:

The principal frequency, f ;
The reference frequency, f r ;
The length, L;
The captured patterns, I cn ;

Output:
The absolute phase, Φ;

1: Build a 2-D LUT with f and f r by using Eq. (18) and the 1-D LUT built with Eq. (11);
2: For φ and φr computed by using Eq. (4), rescale them obtain φ̃ and φ̃r by using Eqs. (16) and (17);
3: Use the values of φ̃ and φ̃r and as indices to access orders, k, of wraps stored in the 2-D LUT built in Step 1;
4: With the orders k, finally obtain Φ by using Eq. (5);
5: If f or f r is not changed, repeat Steps 2-4 for incoming I cn ; otherwise Step 1 is needed.

3. Optimal reference frequency selection

In this work, the principal frequency, i.e., the highest frequency, is typically fixed, while the
reference frequency can be selected as any number co-prime to the principal. By analyzing errors
causing errant phase unwrapping, this section derives a phase error model helping to determine
an optimal reference frequency for the best phase unwrapping. Here, the term, ∆̂(x), computed
with Eq. (11) is correct only if, in Eq. (10), the error of ∆(x) is less than 0.5, or equivalently, the
phase difference d satisfies:

dφr =
�� f∆φr − f r∆φ

�� < π, (19)

where ∆φr and ∆φ are the errors of φr and φ, respectively. These phase errors may derive from
sensor noise [6, 25], gamma distortion [26], or projector/camera defocus [27]. Sensor noise is
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not typically the main factor that influences phase unwrapping errors unless scanning at very low
SNRs. Likewise, errors caused by gamma distortion are easy to avoid by increasing the number
of shifts or taking an advanced calibration procedure [26].

Projector and/or camera defocus is, on the other hand, a dominant factor in relation to errors in
phase unwrapping. The defocus procedure of an optical lens is typically modeled by a convolution
operation resulting in blurred captured patterns [28], which is denoted as:

Îcn (xc, yc) = Icn (xc, yc) ∗ g(xc, yc), (20)

where the symbol ∗ represents convolution operation and g(x, y) is a convolution kernel. Thus,
the phase computed from blurred images is defined according to:

φ̂ (xc, yc) = tan−1
{

sin [φ(xc, yc)] ∗ g(xc, yc)
cos [φ(xc, yc)] ∗ g(xc, yc)

}
, (21)

where g(x, y) is a point spread function (PSF) with Gaussian model. Here, we suppose the size
of the PSF is 5 × 5 for facilitating our analysis.
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(a) (b)

Fig. 1. Two forms of wrapped phasesFig. 5. (a) Depth distribution of the 5 × 5 area; (b) Phase map of the 5 × 5 area.

Suppose one 5× 5 area to be convolved by the PSF has the depth distribution shown in Fig. 5(a)
with ten pixels in the first two rows having a depth of h1 while the remaining fifteen pixels have a
depth of h2. The pixels with the same depth correspond to almost the same phase in a small area.
As shown in Fig. 5(b), we treat the phases in the first two rows as φh1 and the remaining three
rows as φh2 . Combining the elements in g(x, y) with Eq. (21), the phase error at (xc, yc), i.e., the
central location of the convolved area, is computed by

∆φ(xc,yc ) = φ(xc, yc) − φ̂(xc, yc) (22)

= tan−1


∑1
i=−1

∑1
j=−1 sin [φ(xc, yc) − φ(xc − i, yc − j)] g(i, j)∑1

i=−1
∑j

j=−1 cos [φ(xc, yc) − φ(xc − i, yc − j)] g(i, j)


≈ tan−1

{
g1 sin (φd)

g1 cos (φd) + g2

}
,

where g1 is the sum of first two rows in g(x, y), g2 is the sum of last three rows in g(x, y), and φd
is the difference between φh1 and φh2 . Because the sum of the elements in the g(x, y) is 1 and
g(x, y) is symmetric, we know that g2 = 1 − g1 and g1 is smaller than 0.5.
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For one small area with slowly varied depths, the φd is small enough such that ∆φ(xc,yc ) is
nearly zero; however, in one small area with fast varying depths, the phase difference, φd , may be
large, resulting in large dφr . Actually, the value of φd depends on its specific position and the
depths of the measured object. For phases computed from patterns of different frequencies, the
value of φd is varied even for the same depth. The range of φd is [−2π, 2π] since φd is computed
from wrapped phases.
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Fig. 1. Two forms of wrapped phasesFig. 6. (a) Error map for f r = 1; (b) Percentages of correct unwrapping points in the phase
maps for different f r .

Setting the principal frequency as f = 32, the reference frequency can be selected as one
element of set {2r −1|r = 1, 2, · · · , 16}. The φd of f and f r , denoted as φ f

d
and φ f r

d
, respectively,

can be any value in [−2π, 2π]. For all possible φ f
d
and φ f r

d
, the specific value of dφr is easy to

compute by using Eq. (19) with known g1 and g2. For example, with g1 = 0.4, g2 = 0.6 and
f r = 1, we can obtain an error map as shown in Fig. 6(a). Similarly, error maps of other reference
frequencies can also be built.

Because the values of dφr in the error map are certain, we can count the number of the points
smaller than π, i.e., the number of correct phase unwrapping points in the error maps when the
convolution effect exists. Then, the percentages of correct phase unwrapping points in the error
maps for different f r can be computed, as shown in Fig. 6(b), which can direct us to obtain a
condition to achieve the largest phase unwrapping success rate. The larger the percentage, the
less likely the phase unwrapping errors caused by the convolution effect will happen.
In the example shown in Fig. 6, the inferred optimal reference frequency is 31. Once the

convolution parameters g1 and g2 are solved, we can infer an optimal reference frequency for the
best phase unwrapping. The g(x, y) can be expressed as a 2-D circular function according to:

g(x, y) = 1
2πσ

e−
x2+y2

2σ2 , (23)

where σ is the standard deviation of the Gaussian distribution [29]. After obtaining the σ of the
PSF, we can calculate the parameters g1 and g2 with the size of PSF. Actually, the size of PSF
is merely to obtain the parameters g1 and g2 facilely. The circumstances of phase unwrapping
errors are mainly surrounding discontinuous areas. For such areas, a PSF will influence the
accuracy of phases only if the PSF is just falling on the central discontinuous areas, which means
the PSF is nearly half and half distributing in the areas. So the values of g1 and g2 mainly depend
on the standard deviation of the PSF.
The PSF is actually a low-pass filter such that the intensities of higher-frequency captured

patterns have greater attenuation. The intensity modulation is a parameter which is significantly
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affected by the PSF, and the attenuated intensity modulation can be expressed according to:

B̂c
f = Bc

0 e−2π2σ2 f 2
, (24)

where Bc
0 is the uninfluenced intensity modulation [29]. Motivated by the method in [29], we use

a combination of attenuated intensity modulation, B̂c
f
and B̂c

f r
, generated by patterns of f and

f r , respectively, to evaluate the σ with

σ =

√√√√ ln
(
B̂c
f r
/B̂c

f

)
2π2

[
f 2 − ( f r )2

] . (25)

Combining the known σ with Eq. (23), the values of g(x, y) can be obtained for the size of 5 × 5.
After building the error maps with known g1 and g2, we can count the percentages of correct
unwrapping points in the phase maps for different f r similar to Fig. 6(b). Then, the optimal
reference frequency is easy to infer.

4. Experimental results

In this section, experiments are conducted to verify the effectiveness of proposed phase unwrapping
and the correctness of error analysis in Sec. 3. The PMP scanner consists of a Casio XJ-M140
projector, an AVT Prosilica GC650 camera, and a computer as the controller. The resolution of
projector and camera are set as 800 × 600 and 640 × 480, respectively, and the camera works in
grayscale mode. The software is programmed by using C++ language.
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Fig. 1. Two forms of wrapped phasesFig. 7. (a) Percentages of correct unwrapping points in the phase maps for different f r ; (b)
Average values of error less than π for different f r .

First and in order to determine an optimal reference frequency, we conduct a group of
experiments using patterns with the following settings: N = 16, Ap = Bp = 127.5, principal
frequency f = 8, and reference frequency f r = 1. The scanned object is a white wall. Before
scanning, the projector is well focused on the wall. After capturing the patterned images from
the view of camera, we compute the attenuated intensity modulations, B̂c

f r
and B̂c

f
, with the size

of 640×480 by using Eq. (3). Then, we take the average of the central 560×400 pixels in the
original B̂c

f r
and B̂c

f
as the final B̂c

f r
and B̂c

f
to evaluate σ by using Eq. (25). In the experiments,

the estimated σ is 2.31. With σ = 2.31 and the size of 5 × 5, the values of g(x, y) are obtained
by using Eq. (23) and the parameters g1 and g2 are 0.38 and 0.62, respectively.
The σ may slightly vary for different distances to the camera; however, the percentages of

correct unwrapping points have almost the same trends for g1 around 0.38. The final principal
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frequency we choose is 32 and the percentages of correct points in the phase error maps for
different f r are shown in Fig. 7(a). The percentage increases slowly over the first several
frequencies, then increases fast as the frequency becomes larger, reaching its highest point at
f r = 31. The percentages represent the probabilities of successful phase unwrapping when the
convolution effect exists, which means the circumstance of f r = 31 is less likely to meet phase
unwrapping errors than the others. Moreover, we compute the average values of the points in
error maps less than π for different f r , and these results are shown in Fig. 7(b). The average
value is of the lowest for f r = 31. Such results show us the denoising ability of those correct
unwrapping points in error maps partly. The smaller the average value, the better the denoising
ability. Thus, we infer the optimal reference frequency for f = 32 is f r = 31.

To verify the correctness of the proposed phase unwrapping and the optimal reference frequency
we infer, we conduct other groups of experiments. First, we use the proposed method with the
2-D LUT for phase unwrapping. The basic settings of the projected patterns are as follows:
N = 16, Ap = Bp = 127.5, a principal frequency f = 32, and a reference frequency that is one
element from the set {2r − 1|r = 1, 2, · · · , 16}. The phases affected by gamma distortion and
noise are ignorable under such setting. The scanned object is also a white wall. We employ the
fringe orders computed by multi-frequency phase unwrapping method [5] with patterns of all
frequencies as the ground truth.

Following the proposed phase unwrapping using the 2-D LUT step-by-step, we can obtain the
measured fringe orders. We choose L as 480, i.e., the height of the captured patterns, which
is also the largest resolution of the phase along the scanning direction. Thus, the success rates
of phase unwrapping for different f r can be counted. Consequently, the success rates are all
100% for each f r , because the scanned object is a flat white wall with no discontinuous areas,
performing successful phase unwrapping. The circumstance of f r = 1 in the experiment is the
same as multi-frequency method using two-frequencies, i.e., traditional two-frequency method.

According to the above results, our method achieves the same success rate as multi-frequency
method when the scanned object is plane. Though the way of establishing the LUT in [21] is
different from ours, their fringe orders are also accessed by using Eq. (10). So, our method
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Fig. 1. Unwrapped phases with error markers for different reference frequencies
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Fig. 8. Unwrapped phases with error markers for: (a) f r = 1; (b) f r = 7; (c) f r = 13; (d)
f r = 19; (e) f r = 25; (f) f r = 31.
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Fig. 1. Success rate for different reference frequencies

References

Fig. 9. Success rate of: (a) Plastic horse; (b) Michelangelo plaster statue; (c) Calibration
target; (d) Cotton duck.

achieves the same success rate as the method in [21]; however, the steps of the method in [21]
needs an ergodic process to search the corresponding fringe orders, which is much more
time-consuming than our proposed LUTs.
For more interesting experiments, we changed the scanned target to either of four objects: a

plastic horse; a Michelangelo plaster statue; a calibration target; and a cotton duck. The basic
setting for projected patterns is the same as the just performed experiment. Similar to the above,
the measured fringe orders and the ground truth are computed, respectively. The unwrapped
phases of the Michelangelo plaster statue for different f r are displayed in Fig. 8 with the red
markers representing wrongly unwrapped points. The shadow noises in the principal phase
and each reference phase are removed by using Bc , computed by Eq. (3), with a threshold of
10. As we can see, most incorrectly unwrapped points are surrounding an edge, the nose, and
the eye areas, consistent with the analysis in Sec. 3 where the defocus of camera is a dominant
effect when the depth variations are fast. The error points for f r = 31 are few and much less
than that of the others. Moreover, the success rates are shown in Fig. 9 where success rates
of the Michelangelo plaster statue, the calibration target, and the cotton duck have the trend of
decreasing first, then increasing as f r increases.

In contrast, the success rate of the plastic horse has the trend of increasing as f r increases. By
observing the denoising ability shown in Fig. 7(b) when convolution effect exists, the average
value of error less than π for f r = 1 is not the largest and has the trend of increasing for f r < 27.
The average value achieves smallest for f r = 31 and the value is much smaller than that of other
f r . Combining the ability to denoise with the percentages of successful phase unwrapping points
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in the error maps when convolution exists, the final success rate may not be smallest for f r = 1,
while the success rate of f r = 31 is the largest since both the two curves in Fig. 7 indicate us that
the optimal reference frequency is f r = 31. Eventually, all four of these groups of experiments
achieve the highest success rate when f r = 31. Such results are consistent with our inference
about setting the optimal reference frequency.

Table 3 lists the specific success rates for f r = 1 and f r = 31 in different groups of experiments.
The success rate for f r = 31 are close to 100% and both of them are much better than that for
f r = 1. Therefore, the proposed method offers not only a flexible frequency combination but
also a better phase unwrapping success rate than the traditional two-frequency method. Finally
for the four objects, we use the Φ unwrapped via φr with f r = 31 to reconstruct the 3-D point
clouds with the front and side views shown in Fig. 10. There are just a few dissociative points
caused by phase unwrapping errors surrounding the edges of each object. The main parts of each
object are reconstructed well.

Table 3. Success Rate for f r = 1 and f r = 31

Object Horse Statue Target Duck

Success rate for f r = 1(unit: %) 98.43 98.96 99.85 98.82

Success rate for f r = 31 (unit: %) 99.96 99.86 99.95 99.88

Universal manuscript template for OSA journals

AUTHOR ONE,1 AUTHOR TWO,2,* AND AUTHOR THREE2,3

1Peer Review, Publications Department, The Optical Society (OSA), 2010 Massachusetts Avenue NW,
Washington, DC 20036, USA
2Publications Department, The Optical Society (OSA), 2010 Massachusetts Avenue NW, Washington, DC
20036, USA
3Currently with the Department of Electronic Journals, The Optical Society (OSA), 2010 Massachusetts
Avenue NW, Washington, DC 20036, USA
*opex@osa.org

Abstract: LATEX .
© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

References

(a) (b)

(c) (d)

Fig. 1. Two forms of wrapped phasesFig. 10. Reconstructed 3-D point clouds with f r = 31: (a) Plastic horse; (b) Michelangelo
plaster statue; (c) Calibration target; (d) Cotton duck.

As a last illustration, we conducted a group of experiments to compare the efficiency of the
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traditional multi-frequency method [5], Ding’s method in [21], and the proposed method using
the 1-D LUT and the 2-D LUT, respectively. The calculation process is programmed by C++
language and running on a computer with 3.2 GHz Intel i5-6500 CPU, 16 GB RAM. The basic
settings of the projected patterns are the same as the above experiments. The wrapped phases
come from experiments on the Michelangelo plaster statue. According to the results of the above
experiments, the accuracy of phase unwrapping for multi-frequency with two frequencies is
fixed and the proposed method can get better performance on phase unwrapping because of
flexible reference frequency usage. If the multi-frequency method achieves the same accuracy of
phase unwrapping as the proposed method, more patterns are needed, which will sacrifice the
time of scanning and calculating phases. Table 4 lists the number of needed patterns if all the
methods achieve the success rate larger than 99.80%. Under such a success rate, we do 1000×
experiments for each method with the average time cost of phase unwrapping compared, as shown
in Table 4. If we take the time on scanning and calculating wrapped phases into consideration,
the multi-frequency method will take much longer to complete since many more patterns are
needed.

Table 4. The Number of Need Patterns When the Success Rate is Larger Than 99.80%
and Time Cost of Phase Unwrapping using Different Phase Unwrapping Methods

Method Multi-frequency [5] Ding [21] 1-D LUT 2-D LUT

The number of needed patterns 64 32 32 32

Time cost 2.578ms 10.328ms 1.641ms 1.047ms

Table 4 shows us that the time of performing the 1-D LUT algorithm and 2-D LUT algorithm
is much shorter than that of the multi-frequency method or Ding’s method [21], and the time
cost of 2-D LUT algorithm has improved 36.20% over the 1-D. The 1-D LUT algorithm needs
to compute the extra phase difference, while the computed two wrapped phases can just be the
indices of the 2-D LUT. Replacing time cost by space cost is more efficient in practical usage. As
the above analysis shows, Ding’s method needs an ergodic process to find the corresponding
fringe orders, which is very time-consuming. The experimental results verify such analysis
and with the proposed phase unwrapping using the 2-D LUT only spending 10.14% the time
of Ding’s LUT. So, the proposed phase unwrapping procedure using the 2-D LUT can be more
effective in application and can meet the criteria of real-time PMP.
Now while the size of the 2-D LUT is much larger than that of 1-D LUT, our experiments

verify that the speed of accessing fringe order in the 2-D LUT is much faster. The strategy of
replacing time complexity by space complexity is effective, and the size, L × L, is not very
space-consuming. The usage of proposed LUTs is just an accessing process where the size of the
LUT hardly influences the speed of phase unwrapping. Also by comparing the success rates for
different L, we find that L does not have a significant impact on the phase unwrapping results.
The biggest difference between two success rates for different L is small and will not be reflected
in the percentage of two decimals, which is ignored in this paper. Though different L may raise
quantization error because of the rounding operation, only the indexed points really close to
the boundary of its stripe in the 2-D LUT may incur phase unwrapping errors caused by the
quantization error and such circumstance seldom happens. So, we just choose L as the height
of the captured patterns, which is also the largest resolution of the phase along the scanning
direction.

Additionally, though we suppress the gamma distortion by increasing N in our work, the gamma
distortion could influence the proposed phase unwrapping method if it is large. After conducting
groups of experiments on a plane wall with f = 32 and N = 3, we find that the success rates
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for different f r are all smaller than 30%, which means destructive errors of phase unwrapping.
Moreover, when changing N to 4, all the success rates become almost 100%. Then, we select the
highest frequency as 23, 13, 7, and 5, respectively. The success rates are increasing as the highest
frequency decreases. Only when the highest frequency is 5, the success rates of f r = 1, 3, 4
achieve 100% and the results of other highest frequencies are not ideal. It has been proved that the
amplitude of wrapped phase error caused by gamma distortion has no relation with frequency and
the phase error is periodically varied along the scanning direction [26]. Substituting the wrapped
phase error caused by gamma distortion into Eq. (19), the phase difference dφr fluctuates rapidly
in the range of [−( f + f r )|∆φ |max, ( f + f r )|∆φ |max]. Thus, if gamma distortion is large enough,
there will be destructive errors of phase unwrapping, i.e., a large number of points in the wrapped
phase will be wrongly unwrapped. Also, if the highest frequency is set as a small number which
can avoid phase unwrapping error caused by gamma distortion, the unwrapped phase will still
suffer from errors, resulting in unreliable 3-D reconstruction. Actually, such phenomena are not
just happening in the proposed phase unwrapping method. For other temporal phase unwrapping
methods, if the highest frequency is much larger than the low frequency, the success rate of phase
unwrapping will be affected by gamma distortion a lot. So, we usually eliminate the gamma
distortion by increasing the number of shifts or taking an advanced calibration procedure [26].

5. Conclusion

In this paper, we propose a real-time phase unwrapping method to unwrap phase flexibly and
automatically. We derived a mathematical model for wrapped phases and fringe orders by using
geometry analysis. Though, with analyzing the model, fringe orders can be determined, we
choose an automatically built 1-D or 2-D LUT according to the model to solve the fringe orders.
Considering the dominant influence of the defocus effect on phase unwrapping, we derived an
error model to find the optimal reference frequencies. Experimental results verify the correctness
and efficiency of the proposed method. Although the proposed method using a 2-D LUT is faster
than that of a 1-D LUT. The size of the 2-D LUT is much larger than 1-D LUT. Also, the size
of 2-D LUT is related to quantization error which we have ignored in this paper because only
indices close to the boundary of the stripe in the 2-D LUT may correspond to wrong fringe orders.
In future works, we will work on simplifying the 2-D LUT and introducing interpolation to avoid
the quantization error as well as perform optimal highest frequency selection.
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