1,154 research outputs found

    Phase diagram and neutron spin resonance of superconducting NaFe1−xCuxAs

    Get PDF
    We use transport and neutron scattering to study the electronic phase diagram and spin excitations of NaFe1−xCuxAs single crystals. Similar to Co- and Ni-doped NaFeAs, a bulk superconducting phase appears near x≈2% with the suppression of stripe-type magnetic order in NaFeAs. Upon further increasing Cu concentration the system becomes insulating, culminating in an antiferromagnetically ordered insulating phase near x≈50%. Using transport measurements, we demonstrate that the resistivity in NaFe1−xCuxAs exhibits non-Fermi-liquid behavior near x≈1.8%. Our inelastic neutron scattering experiments reveal a single neutron spin resonance mode exhibiting weak dispersion along c axis in NaFe0.98Cu0.02As. The resonance is high in energy relative to the superconducting transition temperature Tc but weak in intensity, likely resulting from impurity effects. These results are similar to other iron pnictides superconductors despite that the superconducting phase in NaFe1−xCuxAs is continuously connected to an antiferromagnetically ordered insulating phase near x≈50% with significant electronic correlations. Therefore, electron correlations is an important ingredient of superconductivity in NaFe1−xCuxAs and other iron pnictides

    Effect of an Electron-phonon Interaction on the One-electron Spectral Weight of a d-wave Superconductor

    Full text link
    We analyze the effects of an electron-phonon interaction on the one-electron spectral weight A(k,omega) of a d_{x^2-y^2} superconductor. We study the case of an Einstein phonon mode with various momentum-dependent electron-phonon couplings and compare the structure produced in A(k,omega) with that obtained from coupling to the magnetic pi-resonant mode. We find that if the strength of the interactions are adjusted to give the same renormalization at the nodal point, the differences in A(k,omega) are generally small but possibly observable near k=(pi,0).Comment: 10 pages, 14 figures (color versions of Figs. 2,4,10,11,12 available upon request

    Spectral functions in the sigma-channel near the critical end point

    Get PDF
    Spectral functions in the σ\sigma-channel are investigated near the chiral critical end point (CEP), that is, the point where the chiral phase transition ceases to be first-ordered in the (ÎŒ,T)(\mu,T)-plane of the QCD phase diagram. At that point the σ\sigma meson becomes massless in spite of explicit breaking of the chiral symmetry. It is expected that experimental signatures peculiar to CEP can be observed through spectral changes in the presence of abnormally light σ\sigma mesons. As a candidate, the invariant-mass spectrum for diphoton emission is estimated with the chiral quark model incorporated. The results show the characteristic shape with a peak in the low energy region, which may serve as a signal for CEP. However, we find that the diphoton multiplicity is highly suppressed by infrared behaviors of the σ\sigma meson. Experimentally, in such a low energy region below the threshold of two pions, photons from π0→2Îł\pi^0\to2\gamma are major sources of the background for the signal.Comment: 12 pages, 8 figures, 1 figure replaced, minor modification

    Berry phases and pairing symmetry in Holstein-Hubbard polaron systems

    Full text link
    We study the tunneling dynamics of dopant-induced hole polarons which are self-localized by electron-phonon coupling in a two-dimensional antiferro- magnet. Our treatment is based on a path integral formulation of the adia- batic approximation, combined with many-body tight-binding, instanton, con- strained lattice dynamics, and many-body exact diagonalization techniques. Our results are mainly based on the Holstein-tJtJ and, for comparison, on the Holstein-Hubbard model. We also study effects of 2nd neighbor hopping and long-range electron-electron Coulomb repulsion. The polaron tunneling dynamics is mapped onto an effective low-energy Hamiltonian which takes the form of a fermion tight-binding model with occupancy dependent, predominant- ly 2nd and 3rd neighbor tunneling matrix elements, excluded double occupan- cy, and an effective intersite charge interactions. Antiferromagnetic spin correlations in the original many-electron Hamiltonian are reflected by an attractive contribution to the 1st neighbor charge interaction and by Berry phase factors which determine the signs of effective polaron tunneling ma- trix elements. In the two-polaron case, these phase factors lead to polaron pair wave functions of either dx2−y2d_{x^2-y^2}-wave symmetry or p-wave symme- try with zero and nonzero total pair momentum, respectively. Implications for the doping dependent isotope effect, pseudo-gap and Tc of a superconduc- ting polaron pair condensate are discussed/compared to observed in cuprates.Comment: 23 pages, revtex, 13 ps figure

    Hybrid stars with the color dielectric and the MIT bag models

    Full text link
    We study the hadron-quark phase transition in the interior of neutron stars (NS). For the hadronic sector, we use a microscopic equation of state (EOS) involving nucleons and hyperons derived within the Brueckner-Bethe-Goldstone many-body theory, with realistic two-body and three-body forces. For the description of quark matter, we employ both the MIT bag model with a density dependent bag constant, and the color dielectric model. We calculate the structure of NS interiors with the EOS comprising both phases, and we find that the NS maximum masses are never larger than 1.7 solar masses, no matter the model chosen for describing the pure quark phase.Comment: 11 pages, 5 figures, submitted to Phys. Rev.

    Interplay of Electron-Phonon Interaction and Electron Correlation in High Temperature Superconductivity

    Get PDF
    We study the electron-phonon interaction in the strongly correlated superconducting cuprates. Two types of the electron-phonon interactions are introduced in the t−Jt-J model; the diagonal and off-diagonal interactions which modify the formation energy of the Zhang-Rice singlet and its transfer integral, respectively. The characteristic phonon-momentum (q⃗)(\vec q) and electron-momentum (k⃗)(\vec k) dependence resulted from the off-diagonal coupling can explain a variety of experiments. The vertex correction for the electron-phonon interaction is formulated in the SU(2) slave-boson theory by taking into account the collective modes in the superconducting ground states. It is shown that the vertex correction enhances the attractive potential for the d-wave paring mediated by phonon with q⃗=(π(1−ή),0)\vec q=(\pi(1-\delta), 0) around ή≅0.3\delta \cong 0.3 which corresponds to the half-breathing mode of the oxygen motion.Comment: 14 pages, 13 figure

    Neutron star properties in the quark-meson coupling model

    Get PDF
    The effects of internal quark structure of baryons on the composition and structure of neutron star matter with hyperons are investigated in the quark-meson coupling (QMC) model. The QMC model is based on mean-field description of nonoverlapping spherical bags bound by self-consistent exchange of scalar and vector mesons. The predictions of this model are compared with quantum hadrodynamic (QHD) model calibrated to reproduce identical nuclear matter saturation properties. By employing a density dependent bag constant through direct coupling to the scalar field, the QMC model is found to exhibit identical properties as QHD near saturation density. Furthermore, this modified QMC model provides well-behaved and continuous solutions at high densities relevant to the core of neutron stars. Two additional strange mesons are introduced which couple only to the strange quark in the QMC model and to the hyperons in the QHD model. The constitution and structure of stars with hyperons in the QMC and QHD models reveal interesting differences. This suggests the importance of quark structure effects in the baryons at high densities.Comment: 28 pages, 10 figures, to appear in Physical Review
    • 

    corecore