242 research outputs found

    Thermal Behaviour and Detonation Characterization of N-Benzoyl-3,3-dinitroazetidine

    Get PDF
    N-benzoyl-3,3-dinitroazetidine(BDNAZ) is a derivative of 3,3-dinitroazetidine (DNAZ). Its thermal behaviour was studied by DSC methods. The results show that there are one melting process and two exothermic decomposition processes. The kinetic parameters of the intense exothermic decomposition process were obtained from the analysis of the DSC curves. The apparent activation energy, pre-exponential factor and the mechanism function are 170.77 kJ mol–1, 1014.12 s–1 and f(α) = (1–a)–1/2, respectively. The specific heat capacity of BDNAZ was determined with a continuous Cp mode of a micro-calorimeter. The standard mole specific heat capacity ofBDNAZwas 286.31 J mol1 K–1 at 298.15 K. Using the relationship between Cp and T with the thermal decomposition parameters, the time of the thermal decomposition from initialization to thermal explosion (adiabatic time-to-explosion, tTIAD), the self-accelerating decomposition temperature (TSADT), thermal ignition temperature (TTIT), critical temperatures of thermal explosion (Tb) and period of validity (t0.9) were obtained to evaluate its thermal safety. The detonation velocity (D) and pressure (P) of BDNAZ were estimated by using the nitrogen equivalent equation according to the experimental density.KEYWORDS N-benzoyl-3,3-dinitroazetidine(BDNAZ), thermalbehaviour, non-isothermalkinetics, thermalsafety, detonation characterization

    Intermolecular Interactions and Thermodynamic Properties of 3,6-Diamino-1,2,4,5-tetrazine-1,4-dioxide Dimers: A Density Functional Theoretical Study

    Get PDF
    Three fully optimized structures of 3,6-diamino-1,2,4,5-tetrazine-1,4-dioxide (LAX-112) dimers have been obtained with the density functional theory (DFT) method at the B3LYP/6-311++G level. Vibrational frequency calculations were carried out to ascertain that each structure is a minimum (no imaginary frequencies). The intermolecular interaction energy is calculated with the basis set superposition error (BSSE) correction and zero point energy (ZPE) correction. The greatest corrected binding energy among the three dimers is –42.38 kJ mol–1. The charge redistribution mainly occurs on the adjacent O(N)……H atoms between submolecules and the charge transfer between two subsystems is very small. Natural bond orbital (NBO) analysis was performed to reveal the origin of the interaction. Based on the vibrational analysis, the standard thermodynamic functions (heat capacities (cop), entropies (Som ) and enthalpies (Hom)) and the changes of thermodynamic properties from the monomer to dimer with the temperature ranging from 200.00 K to 800.00 K have been obtained using statistical thermodynamics. The results show that the strong hydrogen bonds dominantly contribute to the dimers, while the bonding energies are not only determined by the hydrogen bonding. The dimerization process of dimer II can occur spontaneously at room temperature.KEYWORDS 3,6-Diamino-1,2,4,5-tetrazine-1,4-dioxide (LAX-112), intermolecular interaction, density functional theory (DFT), natural bond orbital (NBO) analysis, thermodynamic properties

    GdxSi grown with mass-analyzed low energy dual ion beam epitaxy technique

    Get PDF
    Semiconducting gadolinium silicide GdxSi samples were prepared by mass-analyzed low-energy dual ion beam epitaxy technique. Auger electron spectroscopy depth profiles indicate that the gadolinium ions are implanted into the single-crystal silicon substrate and formed 20 nm thick GdxSi film. X-ray double-crystal diffraction measurement shows that there is no new phase formed. The XPS spectra show that one type of silicon peaks whose binding energy is between that of silicide and silicon dioxide, and the gadolinium peak of binding energy is between that of metal Gd and Gd2O3. All of these results indicate that an amorphous semiconductor is formed. (C) 2002 Elsevier Science B.V. All rights reserved

    Wild pigs influence tropical forest soil microbial communities in a forest-agriculture mosaic landscape

    Get PDF
    Edge effects, the altered abiotic and biotic conditions on the borders of natural areas, have rarely been linked to altered soil biota, which shape ecosystem processes including carbon storage, biogeochemical cycling, and plant performance. Here, we investigated if increased wildlife populations (their increase mediated by foraging in nearby oil palm plantations) affect soil biota when they move between plantations and natural habitats. We used a 22-year fenced exclusion experiment in a primary rain forest in Peninsular Malaysia. We found that the presence of wildlife (mainly native pigs; Sus scrofa) was associated with greater bacterial diversity, an altered bacterial community composition, and indications of a reduced abundance of symbiotic ectomycorrhizal fungi. There were only minor effects of pigs on soil chemistry or microclimate, so we suggest that changes in soil communities are driven by pigs’ leaf litter removal and alterations to plant composition. Our study highlights that indirect effects from agriculture can be induced by wildlife more than1 km into protected areas and this could have important repercussions for ecosystem processes and plant-soil feedbacks

    Targeted gene therapy of nasopharyngeal cancer in vitro and in vivo by enhanced thymidine kinase expression driven by human TERT promoter and CMV enhancer

    Get PDF
    <p>Abstract</p> <p>Background/Aim</p> <p>To explore the therapeutic effects of thymidine kinase (TK) expressed by enhanced vector pGL3-basic- hTERTp-TK-EGFP-CMV driven by human telomerase reverse transcriptase promoter (hTERTp) as well as cytomegalovirus immediate early promoter enhancer (CMV).</p> <p>Materials/Methods</p> <p>Enhanced TK-EGFP expression was confirmed by fluorescent microscopy, real time PCR and telomerase activity. Its effects were examined by survival of tumor cells NPC 5-8F and MCF-7, index of xenograft implanted in nude mice and histology.</p> <p>Results</p> <p>Compared with non-enhanced vector pGL3-basic-TK-hTERTp-EGFP, TK expressed by the enhanced vector significantly decreased NPC 5-8F and MCF-7 cell survival rates after ganciclovir (GCV) treatment (p < 0.001) and tumor progress in nude mice with NPC xenograft and treated with GCV, without obvious toxicity to mouse liver and kidney.</p> <p>Conclusion</p> <p>The enhanced TK expression vector driven by hTERTp with CMV enhancer has brighter clinical potentials in nasopharyngeal carcinoma therapy than the non-enhanced vector.</p

    Dufulin Activates HrBP1 to Produce Antiviral Responses in Tobacco

    Get PDF
    BACKGROUND: Dufulin is a new antiviral agent that is highly effective against plant viruses and acts by activating systemic acquired resistance (SAR) in plants. In recent years, it has been used widely to prevent and control tobacco and rice viral diseases in China. However, its targets and mechanism of action are still poorly understood. METHODOLOGY/PRINCIPAL FINDINGS: Here, differential in-gel electrophoresis (DIGE) and classical two-dimensional electrophoresis (2-DE) techniques were combined with mass spectrometry (MS) to identify the target of Dufulin. More than 40 proteins were found to be differentially expressed (≥1.5 fold or ≤1.5 fold) upon Dufulin treatment in Nicotiana tabacum K(326). Based on annotations in the Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) databases, these proteins were found to be related to disease resistance. Directed acyclic graph (DAG) analysis of the various pathways demonstrated harpin binding protein-1 (HrBP1) as the target of action of Dufulin. Additionally, western blotting, semi-quantitative reverse transcription polymerase chain reaction (RT-PCR), and real time PCR analyses were also conducted to identify the specific mechanism of action of Dufulin. Our results show that activation of HrBP1 triggers the salicylic acid (SA) signaling pathway and thereby produces antiviral responses in the plant host. A protective assay based on lesion counting further confirmed the antiviral activity of Dufulin. CONCLUSION: This study identified HrBP1 as a target protein of Dufulin and that Dufulin can activate the SA signaling pathway to induce host plants to generate antiviral responses

    Activated Met Signalling in the Developing Mouse Heart Leads to Cardiac Disease

    Get PDF
    BACKGROUND: The Hepatocyte Growth Factor (HGF) is a pleiotropic cytokine involved in many physiological processes, including skeletal muscle, placenta and liver development. Little is known about its role and that of Met tyrosine kinase receptor in cardiac development. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we generated two transgenic mice with cardiac-specific, tetracycline-suppressible expression of either Hepatocyte Growth Factor (HGF) or the constitutively activated Tpr-Met kinase to explore: i) the effect of stimulation of the endogenous Met receptor by autocrine production of HGF and ii) the consequence of sustained activation of Met signalling in the heart. We first showed that Met is present in the neonatal cardiomyocytes and is responsive to exogenous HGF. Exogenous HGF starting from prenatal stage enhanced cardiac proliferation and reduced sarcomeric proteins and Connexin43 (Cx43) in newborn mice. As adults, these transgenics developed systolic contractile dysfunction. Conversely, prenatal Tpr-Met expression was lethal after birth. Inducing Tpr-Met expression during postnatal life caused early-onset heart failure, characterized by decreased Cx43, upregulation of fetal genes and hypertrophy. CONCLUSIONS/SIGNIFICANCE: Taken together, our data show that excessive activation of the HGF/Met system in development may result in cardiac damage and suggest that Met signalling may be implicated in the pathogenesis of cardiac disease

    The RBP-Jκ Binding Sites within the RTA Promoter Regulate KSHV Latent Infection and Cell Proliferation

    Get PDF
    Kaposi's sarcoma-associated herpesvirus (KSHV) is tightly linked to at least two lymphoproliferative disorders, primary effusion lymphoma (PEL) and multicentric Castleman's disease (MCD). However, the development of KSHV-mediated lymphoproliferative disease is not fully understood. Here, we generated two recombinant KSHV viruses deleted for the first RBP-Jκ binding site (RTA1st) and all three RBP-Jκ binding sites (RTAall) within the RTA promoter. Our results showed that RTA1st and RTAall recombinant viruses possess increased viral latency and a decreased capability for lytic replication in HEK 293 cells, enhancing colony formation and proliferation of infected cells. Furthermore, recombinant RTA1st and RTAall viruses showed greater infectivity in human peripheral blood mononuclear cells (PBMCs) relative to wt KSHV. Interestingly, KSHV BAC36 wt, RTA1st and RTAall recombinant viruses infected both T and B cells and all three viruses efficiently infected T and B cells in a time-dependent manner early after infection. Also, the capability of both RTA1st and RTAall recombinant viruses to infect CD19+ B cells was significantly enhanced. Surprisingly, RTA1st and RTAall recombinant viruses showed greater infectivity for CD3+ T cells up to 7 days. Furthermore, studies in Telomerase-immortalized human umbilical vein endothelial (TIVE) cells infected with KSHV corroborated our data that RTA1st and RTAall recombinant viruses have enhanced ability to persist in latently infected cells with increased proliferation. These recombinant viruses now provide a model to explore early stages of primary infection in human PBMCs and development of KSHV-associated lymphoproliferative diseases
    corecore