80 research outputs found

    The 1287 G/A polymorphism of the Norepinephrine Transporter gene (NET) is involved in Commission Errors in Korean children with Attention Deficit Hyperactivity Disorder

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Previous evidence supports the role of noradrenergic systems in ADHD, and norepinephrine transporter (NET) is critical in regulating the noradrenergic system. The present study aimed to investigate the association between NET gene polymorphism and the performance measures of the Continuous Performance Test (CPT) in Korean ADHD children.</p> <p>Methods</p> <p>Eighty-seven children (mean age = 9.23 ± 1.99 years) with ADHD were recruited from a university hospital. Genotypes of G1287A of the NET gene (SLC6A2) were analyzed. All participants completed the CPT, with performance measures of omission errors, commission errors, reaction time and reaction standardization computed. The relationship between G1287A polymorphisms and CPT performance measures was examined.</p> <p>Results</p> <p>There were 46 subjects with the G/G genotype, 35 subjects with the G/A genotype and 6 subjects with the A/A genotype. Among the three groups, there were no significant differences in the performance of CPTs. When dichotomized according to whether the subjects have the rare allele or not, subjects with the homozygous G/G genotype showed significantly lower commission errors compared to those without G/G genotypes (by independent T-test, t = -2.18, p = 0.026).</p> <p>Discussion</p> <p>Our study found a significant association between commission errors of the CPT and the G1287A genotype of the NET gene in Korean ADHD children. These findings suggest a protective role of the G/G genotype of the NET polymorphisms in the deficits of response inhibition in ADHD children.</p

    RIDESOURCING IN MANUFACTURING SITES: A FRAMEWORK AND CASE STUDY

    Get PDF
    With the recent innovations in transportation, ridesourcing services have been proliferating in many countries. There are increasing attempts to apply ridesourcing in the corporate context. Manufacturing companies now install the Industrial Internet of Things (IIOT) sensors to vehicles to obtain real-time data on the movement of goods and materials. Despite the massive amount of data accumulated, little attention has been paid to exploiting the data for vehicle fleet management (FM). This paper proposes an analytical framework to solve two FM problems: how to group organizational units for vehicle sharing and where to deploy the groups. The framework is then validated with a case study of a Korean shipbuilder. The results indicate that grouping departments with similar spatial patterns can reduce the current fleet

    Effectiveness of a Training Program for Parents of Toddlers with or at Risk of Autism Spectrum Disorder

    Get PDF
    Purpose This study aimed to evaluate a hospital-provided hybrid parental support program designed to help parents implement routine interventions for their toddlers under 34 months, with or at risk of autism spectrum disorder (ASD). Methods An experimental group including 15 pairs of toddlers and their parents received eight weekly sessions, while a control group including nine pairs received no sessions. Toddlers’ joint attention, autism-related behaviors, and adaptive behaviors, as well as parenting stress and parenting efficacy, were compared between baseline and 8 weeks later. Results The toddlers in the experimental group showed significant improvement in their joint attention scores on the Early Social Communication Scales (P<0.01) and the Korean-Childhood Autism Rating Scale scores (P<0.01). However, statistically significant differences were not found in the adaptive behavior composite scores of the Korean Vineland Adaptive Behavior Scales-II and total behavior problem scores of the Korean version of the Child Behavior Checklist. Parenting efficacy in the experimental group showed significant improvement (P<0.05). Parenting stress increased in the experimental group, but the difference was not significant. Additionally, parents showed a statistically significant between-group difference in parenting efficacy (P<0.05). Conclusion A hospital-provided hybrid program affected the development of toddlers with ASD and parents’ implementation of interventions. It is significant that an online platform was used to provide individualized support for families to continue practicing the interventions and that the effectiveness of this program was demonstrated. This intervention can be considered as an efficient and sustainable alternative system to support toddlers with ASD and their families

    Mutations in CIC and IDH1 cooperatively regulate 2-hydroxyglutarate levels and cell clonogenicity

    Get PDF
    The majority of oligodendrogliomas (ODGs) exhibit combined losses of chromosomes 1p and 19q and mutations of isocitrate dehydrogenase (IDH1-R132H or IDH2-R172K). Approximately 70% of ODGs with 1p19q co-deletions harbor somatic mutations in the Capicua Transcriptional Repressor (CIC) gene on chromosome 19q13.2. Here we show that endogenous long (CIC-L) and short (CIC-S) CIC proteins are predominantly localized to the nucleus or cytoplasm, respectively. Cytoplasmic CIC-S is found in close proximity to the mitochondria. To study wild type and mutant CIC function and motivated by the paucity of 1p19q co-deleted ODG lines, we created HEK293 and HOG stable cell lines ectopically co-expressing CIC and IDH1. Non-mutant lines displayed increased clonogenicity, but cells co-expressing the mutant IDH1-R132H with either CIC-S-R201W or -R1515H showed reduced clonogenicity in an additive manner, demonstrating cooperative effects in our assays. Expression of mutant CIC-R1515H increased cellular 2-Hydroxyglutarate (2HG) levels compared to wild type CIC in IDH1-R132H background. Levels of phosphorylated ATP-citrate Lyase (ACLY) were lower in cell lines expressing mutant CIC-S proteins compared to cells expressing wild type CIC-S, supporting a cytosolic citrate metabolism-related mechanism of reduced clonogenicity in our in vitro model systems. ACLY or phospho-ACLY were similarly reduced in CIC-mutant 1p19q co-deleted oligodendroglioma patient samples

    Loss of CIC promotes mitotic dysregulation and chromosome segregation defects

    Get PDF
    Background: CIC is a transcriptional repressor inactivated by loss-of-function mutations in several cancer types, including gliomas, lung cancers, and gastric adenocarcinomas. CIC alterations and/or loss of CIC activity have been associated with poorer outcomes and more aggressive phenotypes across cancer types, which is consistent with the notion that CIC functions as a tumour suppressor across a wide range of contexts. Results: Using mammalian cells lacking functional CIC, we found that CIC deficiency was associated with chromosome segregation (CS) defects, resulting in chromosomal instability and aneuploidy. These CS defects were associated with transcriptional dysregulation of spindle assembly checkpoint and cell cycle regulators. We also identified novel CIC interacting proteins, including core members of the SWI/SNF complex, and showed that they cooperatively regulated the expression of genes involved in cell cycle regulation. Finally, we showed that loss of CIC and ARID1A cooperatively increased CS defects and reduced cell viability. Conclusions: Our study ascribes a novel role to CIC as an important regulator of the cell cycle and demonstrates that loss of CIC can lead to chromosomal instability and aneuploidy in human and murine cells through defects in CS, providing insight into the underlying mechanisms of CIC's increasingly apparent role as a "pan-cancer" tumour suppressor

    Investigation of gene–environment interactions in relation to tic severity

    Get PDF
    Tourette syndrome (TS) is a neuropsychiatric disorder with involvement of genetic and environmental factors. We investigated genetic loci previously implicated in Tourette syndrome and associated disorders in interaction with pre- and perinatal adversity in relation to tic severity using a case-only (N = 518) design. We assessed 98 single-nucleotide polymorphisms (SNPs) selected from (I) top SNPs from genome-wide association studies (GWASs) of TS; (II) top SNPs from GWASs of obsessive–compulsive disorder (OCD), attention-deficit/hyperactivity disorder (ADHD), and autism spectrum disorder (ASD); (III) SNPs previously implicated in candidate-gene studies of TS; (IV) SNPs previously implicated in OCD or ASD; and (V) tagging SNPs in neurotransmitter-related candidate genes. Linear regression models were used to examine the main effects of the SNPs on tic severity, and the interaction effect of these SNPs with a cumulative pre- and perinatal adversity score. Replication was sought for SNPs that met the threshold of significance (after correcting for multiple testing) in a replication sample (N = 678). One SNP (rs7123010), previously implicated in a TS meta-analysis, was significantly related to higher tic severity. We found a gene–environment interaction for rs6539267, another top TS GWAS SNP. These findings were not independently replicated. Our study highlights the future potential of TS GWAS top hits in gene–environment studies.This research was funded by National Institute of Mental Health (NIMH) grant R01MH092293 (to GAH and JAT) and NJCTS (New Jersey Center for Tourette Syndrome and Associated Disorders; to GAH and JAT). This work was also supported by grants from the Judah Foundation, the Tourette Association of America, National Institute of Health (NIH) Grants NS40024, NS016648, MH079489, MH073250, the American Recovery and Re-investment Act (ARRA) Grants NS040024-07S1; NS16648-29S1; NS040024-09S1; MH092289; MH092290; MH092291; MH092292; R01MH092293; MH092513; MH092516; MH092520; MH071507; MH079489; MH079487; MH079488; and MH079494. Dr. Mir has received grants from the Instituto de Salud Carlos III (PI10/01674, PI13/01461), the Consejería de Economía, Innovación, Ciencia y Empresa de la Junta de Andalucía (CVI-02526, CTS-7685), the Consejería de Salud y Bienestar Social de la Junta de Andalucía (PI-0741/2010, PI-0437-2012, PI-0471-2013), the Sociedad Andaluza de Neurología, the Fundación Alicia Koplowitz, the Fundación Mutua Madrileña and the Jaques and Gloria Gossweiler Foundation. Dr. Morer has received grants from the Fundacion Alicia Koplowitz and belongs to the research group of the Comissionat per Universitats i Recerca del Departmanent d’Innovacio (DIUE) 2009SGR1119. Dr. Münchau has received grants from the Deutsche Forschungsgemeinschaft (DFG: MU 1692/3-1, MU 1692/4-1 and FOR 2698). This study was also supported by a Grant from the National Institute for Environmental Health Science (R01 ES021462)

    Histone H3K9 Trimethylase Eggless Controls Germline Stem Cell Maintenance and Differentiation

    Get PDF
    Epigenetic regulation plays critical roles in the regulation of cell proliferation, fate determination, and survival. It has been shown to control self-renewal and lineage differentiation of embryonic stem cells. However, epigenetic regulation of adult stem cell function remains poorly defined. Drosophila ovarian germline stem cells (GSCs) are a productive adult stem cell system for revealing regulatory mechanisms controlling self-renewal and differentiation. In this study, we show that Eggless (Egg), a H3K9 methyltransferase in Drosophila, is required in GSCs for controlling self-renewal and in escort cells for regulating germ cell differentiation. egg mutant ovaries primarily exhibit germ cell differentiation defects in young females and gradually lose GSCs with time, indicating that Egg regulates both germ cell maintenance and differentiation. Marked mutant egg GSCs lack expression of trimethylated H3K9 (H3k9me3) and are rapidly lost from the niche, but their mutant progeny can still differentiate into 16-cell cysts, indicating that Egg is required intrinsically to control GSC self-renewal but not differentiation. Interestingly, BMP-mediated transcriptional repression of differentiation factor bam in marked egg mutant GSCs remains normal, indicating that Egg is dispensable for BMP signaling in GSCs. Normally, Bam and Bgcn interact with each other to promote GSC differentiation. Interestingly, marked double mutant egg bgcn GSCs are still lost, but their progeny are able to differentiate into 16-cell cysts though bgcn mutant GSCs normally do not differentiate, indicating that Egg intrinsically controls GSC self-renewal through repressing a Bam/Bgcn-independent pathway. Surprisingly, RNAi-mediated egg knockdown in escort cells leads to their gradual loss and a germ cell differentiation defect. The germ cell differentiation defect is at least in part attributed to an increase in BMP signaling in the germ cell differentiation niche. Therefore, this study has revealed the essential roles of histone H3K9 trimethylation in controlling stem cell maintenance and differentiation through distinct mechanisms

    Investigation of previously implicated genetic variants in chronic tic disorders: a transmission disequilibrium test approach

    Get PDF
    Genetic studies in Tourette syndrome (TS) are characterized by scattered and poorly replicated findings. We aimed to replicate findings from candidate gene and genome-wide association studies (GWAS). Our cohort included 465 probands with chronic tic disorder (93% TS) and both parents from 412 families (some probands were siblings). We assessed 75 single nucleotide polymorphisms (SNPs) in 465 parent–child trios; 117 additional SNPs in 211 trios; and 4 additional SNPs in 254 trios. We performed SNP and gene-based transmission disequilibrium tests and compared nominally significant SNP results with those from a large independent case–control cohort. After quality control 71 SNPs were available in 371 trios; 112 SNPs in 179 trios; and 3 SNPs in 192 trios. 17 were candidate SNPs implicated in TS and 2 were implicated in obsessive–compulsive disorder (OCD) or autism spectrum disorder (ASD); 142 were tagging SNPs from eight monoamine neurotransmitter-related genes (including dopamine and serotonin); 10 were top SNPs from TS GWAS; and 13 top SNPs from attention-deficit/hyperactivity disorder, OCD, or ASD GWAS. None of the SNPs or genes reached significance after adjustment for multiple testing. We observed nominal significance for the candidate SNPs rs3744161 (TBCD) and rs4565946 (TPH2) and for five tagging SNPs; none of these showed significance in the independent cohort. Also, SLC1A1 in our gene-based analysis and two TS GWAS SNPs showed nominal significance, rs11603305 (intergenic) and rs621942 (PICALM). We found no convincing support for previously implicated genetic polymorphisms. Targeted re-sequencing should fully appreciate the relevance of candidate genes
    corecore