1,981 research outputs found
Understanding User Satisfaction of Instant Messaging Usage: An Empirical Study
The current article examines user satisfaction with instant messaging in building and maintaining social relationships with friends, family members, and others. The research model integrates motivation theory with media capacity theories to explain how the attributes of media capacity (e.g., social presence and media richness) and users\u27 intrinsic and extrinsic motivations toward using instant messaging influence user satisfaction. Data were collected from a sample of 247 Chinese university students via an online survey. The results suggest that perceived enjoyment, perceived social presence, and perceived usefulness are key to user satisfaction. Perceived social presence and perceived media richness are positively associated with perceived enjoyment. It was also found that perceived enjoyment, perceived social presence, and perceived media richness have significant effects on perceived usefulness. Of interest, perceived enjoyment and perceived social presence have stronger effects on user satisfaction than perceived usefulness
Penta-quark states with hidden charm and beauty
More and more hadron states are found to be difficult to be accommodated by
the quenched quark models which describe baryons as 3-quark states and mesons
as antiquark-quark states. Dragging out an antiquark-quark pair from the gluon
field in hadrons should be an important excitation mechanism for hadron
spectroscopy. Our recent progress on the penta-quark states with hidden charm
and beauty is reviewed.Comment: Plenary talk at the 5th Asia-Pacific Conference on Few-Body Problems
in Physics 2011 (APFB2011), 22-26 Aug., 2011, Seoul, Kore
Higher excitations of and in dilepton spectra
We consider lepton pair production via two-hadron annihilation through
various isoscalar vector mesons within hot, baryon-free matter. This is
tantamount to constructing effective form factors which we model using a
vector-meson-dominance approach and compare with experiment. In particular, we
consider the reactions and + c.c. . We find that and are visible in the mass
spectrum for the thermal production rate above the
tail and even above the results---both of which were
considered important in their respective mass regions.Comment: RevTeX, 9 pages, 6 (uuencoded) figures; to appear in Phys. Rev
Thermal properties of coal during low temperature oxidation using a grey correlation method
The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.The low temperature oxidation of coal is a contradictory and unified dynamic process of coexisting mass and heat transfer. The thermophysical properties are crucial during coal spontaneous combustion. In the current paper, the variations of moisture, ash, volatiles, fixed carbon and thermophysical properties (thermal diffusivity, specific heat and thermal conductivity) of three coal samples from 30 °C to 300 °C were studied, and their grey correlation was analyzed. The results indicated that with the increase of temperature, the free moisture of Coals A and B decreased first but then increased, while the free moisture of Coal C kept decreasing without a later increase. The variation of surface moisture was consistent with that of free moisture. The trend of volatiles and fixed carbon was completely the opposite, showing a significant negative correlation. Ash was less affected by temperature. Along with the rise of temperature, the thermal diffusivity of three coal samples decreased first but later increased, and the specific heat was always in a state of increasing. The change in thermal conductivity was mainly affected by specific heat. By calculating the gray correlation degree, the major factors affecting the thermophysical properties were obtained
Expression‐level support for gene dosage sensitivity in three Glycine subgenus Glycine polyploids and their diploid progenitors
Retention or loss of paralogs following duplication correlates strongly with the function of the gene and whether the gene was duplicated by whole\u2010genome duplication (WGD) or by small\u2010scale duplication. Selection on relative gene dosage (to maintain proper stoichiometry among interacting proteins) has been invoked to explain these patterns of duplicate gene retention and loss. In order for gene dosage to be visible to natural selection, there must necessarily be a correlation between gene copy number and gene expression level (transcript abundance), but this has rarely been examined.
We used RNA\u2010Seq data from seven Glycine subgenus Glycine species (three recently formed allotetraploids and their four diploid progenitors) to determine if expression patterns and gene dosage responses at the level of transcription are consistent with selection on relative gene dosage.
As predicted, metabolic pathways and gene ontologies that are putatively dosage\u2010sensitive based on duplication history exhibited reduced expression variance across species, and more coordinated expression responses to recent WGD, relative to putatively dosage\u2010insensitive networks.
We conclude that selection on relative dosage has played an important role in shaping gene networks in Glycine
Role of fractal dimension in random walks on scale-free networks
Fractal dimension is central to understanding dynamical processes occurring
on networks; however, the relation between fractal dimension and random walks
on fractal scale-free networks has been rarely addressed, despite the fact that
such networks are ubiquitous in real-life world. In this paper, we study the
trapping problem on two families of networks. The first is deterministic, often
called -flowers; the other is random, which is a combination of
-flower and -flower and thus called hybrid networks. The two
network families display rich behavior as observed in various real systems, as
well as some unique topological properties not shared by other networks. We
derive analytically the average trapping time for random walks on both the
-flowers and the hybrid networks with an immobile trap positioned at an
initial node, i.e., a hub node with the highest degree in the networks. Based
on these analytical formulae, we show how the average trapping time scales with
the network size. Comparing the obtained results, we further uncover that
fractal dimension plays a decisive role in the behavior of average trapping
time on fractal scale-free networks, i.e., the average trapping time decreases
with an increasing fractal dimension.Comment: Definitive version published in European Physical Journal
Crystal Structures of the HslVU Peptidase–ATPase Complex Reveal an ATP-Dependent Proteolysis Mechanism
AbstractBackground: The bacterial heat shock locus HslU ATPase and HslV peptidase together form an ATP-dependent HslVU protease. Bacterial HslVU is a homolog of the eukaryotic 26S proteasome. Crystallographic studies of HslVU should provide an understanding of ATP-dependent protein unfolding, translocation, and proteolysis by this and other ATP-dependent proteases.Results: We present a 3.0 Å resolution crystal structure of HslVU with an HslU hexamer bound at one end of an HslV dodecamer. The structure shows that the central pores of the ATPase and peptidase are next to each other and aligned. The central pore of HslU consists of a GYVG motif, which is conserved among protease-associated ATPases. The binding of one HslU hexamer to one end of an HslV dodecamer in the 3.0 Å resolution structure opens both HslV central pores and induces asymmetric changes in HslV.Conclusions: Analysis of nucleotide binding induced conformational changes in the current and previous HslU structures suggests a protein unfolding–coupled translocation mechanism. In this mechanism, unfolded polypeptides are threaded through the aligned pores of the ATPase and peptidase and translocated into the peptidase central chamber
Palm kernel expellers as an alternative ingredient in growing pig diets
This study evaluated the effects of palm kernel expellers in growing diets on growth performance, nutrient digestibility, and carcass and meat quality characteristics of growing-finishing pigs. A total of 88 growing pigs were randomly assigned to two dietary treatment groups. The control diet (CON) was a typical growing or finishing diet based on corn-soybean meal, and the treatment diet (PKE) was formulated by replacing CON with 20% palm kernel expellers. The PKE-CON group was fed the PKE diet during the growing period (six weeks) and the CON diet during the finishing period (12 weeks). The CON-CON group was fed the CON diets during both growing and finishing periods. The PKE-CON group showed significantly depressed growth performance and lower nutrient digestibility than the CON-CON group during the growing period. However, after feeding the typical finisher diets during the finishing period, the PKE-CON group showed no difference in growth performance in comparison with the CON-CON group during both the finishing and overall experimental periods. In addition, carcass and meat quality characteristics were not significantly different between the PKE-CON and the CON-CON groups. The results of this study imply that palm kernel expellers can be an alternative ingredient in the growing diets of growing-finishing pigs if the combined feeding strategy (PKE for the growing period and CON for the finishing period) is used.Keywords: Feed alternatives, growing pig diet, growth performance, meat quality traits, palm kernel expelle
Unravelling the Interfacial Dynamics of Bandgap Funneling in Bismuth-Based Halide Perovskites
An environmentally friendly mixed-halide perovskite MA3Bi2Cl9−xIx with a bandgap funnel structure has been developed. However, the dynamic interfacial interactions of bandgap funneling in MA3Bi2Cl9−xIx perovskites in the photoelectrochemical (PEC) system remain ambiguous. In light of this, single- and mixed-halide lead-free bismuth-based hybrid perovskites—MA3Bi2Cl9−yIy and MA3Bi2I9 (named MBCl-I and MBI)—in the presence and absence of the bandgap funnel structure, respectively, are prepared. Using temperature-dependent transient photoluminescence and electrochemical voltammetric techniques, the photophysical and (photo)electrochemical phenomena of solid–solid and solid–liquid interfaces for MBCl-I and MBI halide perovskites are therefore confirmed. Concerning the mixed-halide hybrid perovskites MBCl-I with a bandgap funnel structure, stronger electronic coupling arising from an enhanced overlap of electronic wavefunctions results in more efficient exciton transport. Besides, MBCl-I's effective diffusion coefficient and electron-transfer rate demonstrate efficient heterogeneous charge transfer at the solid–liquid interface, generating improved photoelectrochemical hydrogen production. Consequently, this combination of photophysical and electrochemical techniques opens up an avenue to explore the intrinsic and interfacial properties of semiconductor materials for elucidating the correlation between material characterization and device performance
Channel Coupling in Reactions
The sensitivity of momentum distributions, recoil polarization observables,
and response functions for nucleon knockout by polarized electrons to channel
coupling in final-state interactions is investigated using a model in which
both the distorting and the coupling potentials are constructed by folding
density-dependent effective interactions with nuclear transition densities.
Calculations for O are presented for 200 and 433 MeV ejectile energies,
corresponding to proposed experiments at MAMI and TJNAF, and for C at 70
and 270 MeV, corresponding to experiments at NIKHEF and MIT-Bates. The relative
importance of charge exchange decreases as the ejectile energy increases, but
remains significant for 200 MeV. Both proton and neutron knockout cross
sections for large recoil momenta, MeV/c, are substantially
affected by inelastic couplings even at 433 MeV. Significant effects on the
cross section for neutron knockout are also predicted at smaller recoil
momenta, especially for low energies. Polarization transfer for proton knockout
is insensitive to channel coupling, even for fairly low ejectile energies, but
polarization transfer for neutron knockout retains nonnegligible sensitivity to
channel coupling for energies up to about 200 MeV. The present results suggest
that possible medium modifications of neutron and proton electromagnetic form
factors for can be studied using recoil
polarization with relatively little sensitivity due to final state
interactions.Comment: Substantially revised version accepted by Phys. Rev. C; shortened to
49 pages including 21 figure
- …