2,364 research outputs found

    Collective Flows in a Transport Approach

    Full text link
    We introduce a transport approach at fixed shear viscosity to entropy ratio \etas to study the generation of collective flows in ultra-relativistic heavy-ion collisions. Transport theory supplies a covariant approach valid also at large \etas and at intermediate transverse momentum pTp_T, where deviations from equilibrium is no longer negligible. Such an approach shows that at RHIC energies a temperature dependent \etas enhances significantly the v4/v22v_4/v_2^2 respect to the case of constant \etas. Furthermore if NJL chiral dynamics is self-consistently implemented we show that it does not modify the relation between v2v_2 and \etas.Comment: 4 pages, 4 figures, Proceedings of Hot Quarks 2010, 21-26 June 2010 Las Londe Les Maures; to appear in Journal of Physics: Conference Serie

    Sumo Puff: Tidal Debris or Disturbed Ultra-Diffuse Galaxy?

    Full text link
    We report the discovery of a diffuse stellar cloud with an angular extent 30\gtrsim30^{\prime\prime}, which we term "Sumo Puff", in data from the Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP). While we do not have a redshift for this object, it is in close angular proximity to a post-merger galaxy at redshift z=0.0431z=0.0431 and is projected within a few virial radii (assuming similar redshifts) of two other L{\sim}L_\star galaxies, which we use to bracket a potential redshift range of 0.0055<z<0.04310.0055 < z < 0.0431. The object's light distribution is flat, as characterized by a low Sersic index (n0.3n\sim0.3). It has a low central gg-band surface brightness of 26.4{\sim}26.4 mag arcsec2^{-2}, large effective radius of 13{\sim}13^{\prime\prime} (11{\sim}11 kpc at z=0.0431z=0.0431 and 1.5{\sim}1.5 kpc at z=0.0055z=0.0055), and an elongated morphology (b/a0.4b/a\sim0.4). Its red color (gi1g-i\sim1) is consistent with a passively evolving stellar population and similar to the nearby post-merger galaxy, and we may see tidal material connecting Sumo Puff with this galaxy. We offer two possible interpretations for the nature of this object: (1) it is an extreme, galaxy-size tidal feature associated with a recent merger event, or (2) it is a foreground dwarf galaxy with properties consistent with a quenched, disturbed ultra-diffuse galaxy. We present a qualitative comparison with simulations that demonstrates the feasibility of forming a structure similar to this object in a merger event. Follow-up spectroscopy and/or deeper imaging to confirm the presence of the bridge of tidal material will be necessary to reveal the true nature of this object.Comment: 10 pages, 5 figures, submitted to PASJ for the HSC-SSP special issu

    The nature of plasmon excitations in hole-doped cuprate superconductors

    Get PDF
    High Tc superconductors show a rich variety of phases associated with their charge degrees of freedom. Valence charges can give rise to charge ordering or acoustic plasmons in these layered cuprate superconductors. While charge ordering has been observed for both hole- and electron-doped cuprates, acoustic plasmons have only been found in electron-doped materials. Here, we use resonant inelastic X-ray scattering (RIXS) to observe the presence of acoustic plasmons in two families of hole-doped cuprate superconductors [La2-xSrxCuO4 (LSCO) and Bi2Sr1.6La0.4CuO6+d (Bi2201)], crucially completing the picture. Interestingly, in contrast to the quasi-static charge ordering which manifests at both Cu and O sites, the observed acoustic plasmons are predominantly associated with the O sites, revealing a unique dichotomy in the behaviour of valence charges in hole-doped cuprates.Comment: 11 pages, 7 figures + Supplementary Informatio

    Berry phases and pairing symmetry in Holstein-Hubbard polaron systems

    Full text link
    We study the tunneling dynamics of dopant-induced hole polarons which are self-localized by electron-phonon coupling in a two-dimensional antiferro- magnet. Our treatment is based on a path integral formulation of the adia- batic approximation, combined with many-body tight-binding, instanton, con- strained lattice dynamics, and many-body exact diagonalization techniques. Our results are mainly based on the Holstein-tJtJ and, for comparison, on the Holstein-Hubbard model. We also study effects of 2nd neighbor hopping and long-range electron-electron Coulomb repulsion. The polaron tunneling dynamics is mapped onto an effective low-energy Hamiltonian which takes the form of a fermion tight-binding model with occupancy dependent, predominant- ly 2nd and 3rd neighbor tunneling matrix elements, excluded double occupan- cy, and an effective intersite charge interactions. Antiferromagnetic spin correlations in the original many-electron Hamiltonian are reflected by an attractive contribution to the 1st neighbor charge interaction and by Berry phase factors which determine the signs of effective polaron tunneling ma- trix elements. In the two-polaron case, these phase factors lead to polaron pair wave functions of either dx2y2d_{x^2-y^2}-wave symmetry or p-wave symme- try with zero and nonzero total pair momentum, respectively. Implications for the doping dependent isotope effect, pseudo-gap and Tc of a superconduc- ting polaron pair condensate are discussed/compared to observed in cuprates.Comment: 23 pages, revtex, 13 ps figure

    Transient support from fibroblasts is sufficient to drive functional vascularization in engineered tissues

    Full text link
    Formation of capillary blood vasculature is a critical requirement for native as well as engineered organs and can be induced in vitro by co-culturing endothelial cells with fibroblasts. However, whether these fibroblasts are required only in the initial morphogenesis of endothelial cells or needed throughout is unknown, and the ability to remove these stromal cells after assembly could be useful for clinical translation. In this study, we introduce a technique termed CAMEO (Controlled Apoptosis in Multicellular Tissues for Engineered Organogenesis), whereby fibroblasts are selectively ablated on demand, and utilize it to probe the dispensability of fibroblasts in vascular morphogenesis. The presence of fibroblasts is shown to be necessary only during the first few days of endothelial cell morphogenesis, after which they can be ablated without significantly affecting the structural and functional features of the developed vasculature. Furthermore, we demonstrate the use of CAMEO to vascularize a construct containing primary human hepatocytes that improved tissue function. In conclusion, this study suggests that transient, initial support from fibroblasts is sufficient to drive vascular morphogenesis in engineered tissues, and this strategy of engineering-via-elimination may provide a new general approach for achieving desired functions and cell compositions in engineered organs.R01 EB008396 - NIBIB NIH HHS; UH2 EB017103 - NIBIB NIH HHS; P30 CA014051 - NCI NIH HHS; R01 EB000262 - NIBIB NIH HHS; UH3 EB025765 - NIBIB NIH HHS; UG3 EB025765 - NIBIB NIH HHS; UH3 EB017103 - NIBIB NIH HHSAccepted manuscrip

    Collective modes of asymmetric nuclear matter in Quantum HadroDynamics

    Full text link
    We discuss a fully relativistic Landau Fermi liquid theory based on the Quantum Hadro-Dynamics (QHDQHD) effective field picture of Nuclear Matter ({\it NM}). From the linearized kinetic equations we get the dispersion relations of the propagating collective modes. We focus our attention on the dynamical effects of the interplay between scalar and vector channel contributions. A beautiful ``mirror'' structure in the form of the dynamical response in the isoscalar/isovector degree of freedom is revealed, with a complete parallelism in the role respectively played by the compressibility and the symmetry energy. All that strongly supports the introduction of an explicit coupling to the scalar-isovector channel of the nucleon-nucleon interaction. In particular we study the influence of this coupling (to a δ\delta-meson-like effective field) on the collective response of asymmetric nuclear matter (ANMANM). Interesting contributions are found on the propagation of isovector-like modes at normal density and on an expected smooth transition to isoscalar-like oscillations at high baryon density. Important ``chemical'' effects on the neutron-proton structure of the mode are shown. For dilute ANMANM we have the isospin distillation mechanism of the unstable isoscalar-like oscillations, while at high baryon density we predict an almost pure neutron wave structure of the propagating sounds.Comment: 18 pages (LATEX), 8 Postscript figures, uses "epsfig

    Observation of a charged charmoniumlike structure in e+e(DDˉ)±πe^+e^- \to (D^{*} \bar{D}^{*})^{\pm} \pi^\mp at s=4.26\sqrt{s}=4.26GeV

    Full text link
    We study the process e+e(DDˉ)±πe^+e^- \to (D^{*} \bar{D}^{*})^{\pm} \pi^\mp at a center-of-mass energy of 4.26GeV using a 827pb1^{-1} data sample obtained with the BESIII detector at the Beijing Electron Positron Collider. Based on a partial reconstruction technique, the Born cross section is measured to be (137±9±15)(137\pm9\pm15)pb. We observe a structure near the (DDˉ)±(D^{*} \bar{D}^{*})^{\pm} threshold in the π\pi^\mp recoil mass spectrum, which we denote as the Zc±(4025)Z^{\pm}_c(4025). The measured mass and width of the structure are (4026.3±2.6±3.7)(4026.3\pm2.6\pm3.7)MeV/c2^2 and (24.8±5.6±7.7)(24.8\pm5.6\pm7.7)MeV, respectively. Its production ratio σ(e+eZc±(4025)π(DDˉ)±π)σ(e+e(DDˉ)±π)\frac{\sigma(e^+e^-\to Z^{\pm}_c(4025)\pi^\mp \to (D^{*} \bar{D}^{*})^{\pm} \pi^\mp)}{\sigma(e^+e^-\to (D^{*} \bar{D}^{*})^{\pm} \pi^\mp)} is determined to be 0.65±0.09±0.060.65\pm0.09\pm0.06. The first uncertainties are statistical and the second are systematic.Comment: 7 pages, 4 figures, 1 table; version accepted to be published in PR

    Search for Baryonic Decays of \psi(3770) and \psi(4040)

    Full text link
    By analyzing data samples of 2.9 fb^{-1} collected at \sqrt s=3.773 GeV, 482 pb^{-1} collected at \sqrt s=4.009 GeV and 67 pb^{-1} collected at \sqrt s=3.542, 3.554, 3.561, 3.600 and 3.650 GeV with the BESIII detector at the BEPCII storage ring, we search for \psi(3770) and \psi(4040) decay to baryonic final states, including \Lambda\bar\Lambda\pi^+\pi^-, \Lambda \bar\Lambda\pi^0, \Lambda\bar\Lambda\eta, \Sigma^+ \bar\Sigma^-, \Sigma^0 \bar\Sigma^0, \Xi^-\bar\Xi^+ and \Xi^0\bar\Xi^0 decays. None are observed, and upper limits are set at the 90% confidence level.Comment: 9 pages, 3 figure

    Search for the Lepton Flavor Violation Process J/ψeμJ/\psi \to e\mu at BESIII

    Get PDF
    We search for the lepton-flavor-violating decay of the J/ψJ/\psi into an electron and a muon using (225.3±2.8)×106(225.3\pm2.8)\times 10^{6} J/ψJ/\psi events collected with the BESIII detector at the BEPCII collider. Four candidate events are found in the signal region, consistent with background expectations. An upper limit on the branching fraction of B(J/ψeμ)<1.5×107\mathcal{B}(J/\psi \to e\mu)< 1.5 \times 10^{-7} (90% C.L.) is obtained

    First observation of the M1 transition ψ(3686)γηc(2S)\psi(3686)\to \gamma\eta_c(2S)

    Get PDF
    Using a sample of 106 million \psi(3686) events collected with the BESIII detector at the BEPCII storage ring, we have made the first measurement of the M1 transition between the radially excited charmonium S-wave spin-triplet and the radially excited S-wave spin-singlet states: \psi(3686)\to\gamma\eta_c(2S). Analyses of the processes \psi(2S)\to \gamma\eta_c(2S) with \eta_c(2S)\to \K_S^0 K\pi and K^+K^-\pi^0 gave an \eta_c(2S) signal with a statistical significance of greater than 10 standard deviations under a wide range of assumptions about the signal and background properties. The data are used to obtain measurements of the \eta_c(2S) mass (M(\eta_c(2S))=3637.6\pm 2.9_\mathrm{stat}\pm 1.6_\mathrm{sys} MeV/c^2), width (\Gamma(\eta_c(2S))=16.9\pm 6.4_\mathrm{stat}\pm 4.8_\mathrm{sys} MeV), and the product branching fraction (\BR(\psi(3686)\to \gamma\eta_c(2S))\times \BR(\eta_c(2S)\to K\bar K\pi) = (1.30\pm 0.20_\mathrm{stat}\pm 0.30_\mathrm{sys})\times 10^{-5}). Combining our result with a BaBar measurement of \BR(\eta_c(2S)\to K\bar K \pi), we find the branching fraction of the M1 transition to be \BR(\psi(3686)\to\gamma\eta_c(2S)) = (6.8\pm 1.1_\mathrm{stat}\pm 4.5_\mathrm{sys})\times 10^{-4}.Comment: 7 pages, 1 figure, 1 tabl
    corecore