812 research outputs found

    The impact of two-dimensional elastic disk

    Full text link
    The impact of a two-dimensional elastic disk with a wall is numerically studied. It is clarified that the coefficient of restitution (COR) decreases with the impact velocity. The result is not consistent with the recent quasi-static theory of inelastic collisions even for very slow impact. The abrupt drop of COR is found due to the plastic deformation of the disk, which is assisted by the initial internal motion.(to be published in J. Phys. Soc. Jpn.)Comment: 6 Pages,2 figure

    Experimental Electronic Structure and Interband Nesting in BaVS_3

    Get PDF
    The correlated 3d sulphide BaVS_3 is a most interesting compound because of the apparent coexistence of one-dimensional and three-dimensional properties. Our experiments explain this puzzle and shed new light on its electronic structure. High-resolution angle-resolved photoemission measurements in a 4eV wide range below the Fermi level explored the coexistence of weakly correlated a_1g wide-band and strongly correlated e_g narrow-band d-electrons that is responsible for the complicated behavior of this material. The most relevant result is the evidence for a_1g--e_g inter-band nesting condition.Comment: 4 pages, 3 figure

    Collision of One-Dimensional Nonlinear Chains

    Full text link
    We investigate one-dimensional collisions of unharmonic chains and a rigid wall. We find that the coefficient of restitution (COR) is strongly dependent on the velocity of colliding chains and has a minimum value at a certain velocity. The relationship between COR and collision velocity is derived for low-velocity collisions using perturbation methods. We found that the velocity dependence is characterized by the exponent of the lowest unharmonic term of interparticle potential energy

    An optimally concentrated Gabor transform for localized time-frequency components

    Full text link
    Gabor analysis is one of the most common instances of time-frequency signal analysis. Choosing a suitable window for the Gabor transform of a signal is often a challenge for practical applications, in particular in audio signal processing. Many time-frequency (TF) patterns of different shapes may be present in a signal and they can not all be sparsely represented in the same spectrogram. We propose several algorithms, which provide optimal windows for a user-selected TF pattern with respect to different concentration criteria. We base our optimization algorithm on lpl^p-norms as measure of TF spreading. For a given number of sampling points in the TF plane we also propose optimal lattices to be used with the obtained windows. We illustrate the potentiality of the method on selected numerical examples

    Percutaneous transfemoral-transseptal implantation of a second-generation CardiAQℱ mitral valve bioprosthesis: first procedure description and 30-day follow-up

    Get PDF
    Transcatheter mitral valve implantation for mitral valve regurgitation is in the very early phase of development because of challenging anatomy and device dimensions. We describe the procedure of a transfemoral-transseptal implantation of the second-generation CardiAQℱ mitral valve bioprosthesis and 30-day follow-up

    Phytoplankton Community Response to Nutrients, Temperatures, and a Heat Wave in Shallow Lakes: An Experimental Approach

    Get PDF
    Phytoplankton usually responds directly and fast to environmental fluctuations, making them useful indicators of lake ecosystem changes caused by various stressors. Here, we examined the phytoplankton community composition before, during, and after a simulated 1-month heat wave in a mesocosm facility in Silkeborg, Denmark. The experiment was conducted over three contrasting temperature scenarios (ambient (A0), Intergovernmental Panel on Climate Change A2 scenario (circa +3 degrees C, A2) and A2+ %50 (circa +4.5 degrees C, A2+)) crossed with two nutrient levels (low (LN) and high (HN)) with four replicates. The facility includes 24 mesocosms mimicking shallow lakes, which at the time of our experiment had run without interruption for 11 years. The 1-month heat wave effect was simulated by increasing the temperature by 5 degrees C (1 July to 1 August) in A2 and A2+, while A0 was not additionally heated. Throughout the study, HN treatments were mostly dominated by Cyanobacteria, whereas LN treatments were richer in genera and mostly dominated by Chlorophyta. Linear mixed model analyses revealed that high nutrient conditions were the most important structuring factor, which, regardless of temperature treatments and heat waves, increased total phytoplankton, Chlorophyta, Bacillariophyta, and Cyanobacteria biomasses and decreased genus richness and the grazing pressure of zooplankton. The effect of temperature was, however, modest. The effect of warming on the phytoplankton community was not significant before the heat wave, yet during the heat wave it became significant, especially in LN-A2+, and negative interaction effects between nutrient and A2+ warming were recorded. These warming effects continued after the heat wave, as also evidenced by Co-inertia analyses. In contrast to the prevailing theory stating that more diverse ecosystems would be more stable, HN were less affected by the heat wave disturbance, most likely because the dominant phytoplankton group cyanobacteria is adapted to high nutrient conditions and also benefits from increased temperature. We did not find any significant change in phytoplankton size diversity, but size evenness decreased in HN as a result of an increase in the smallest and largest size classes simultaneously. We conclude that the phytoplankton community was most strongly affected by the nutrient level, but less sensitive to changes in both temperature treatments and the heat wave simulation in these systems, which have been adapted for a long time to different temperatures. Moreover, the temperature and heat wave effects were observed mostly in LN systems, indicating that the sensitivity of phytoplankton community structure to high temperatures is dependent on nutrient availability

    Combined and single effects of pesticide carbaryl and toxic Microcystis aeruginosa on the life history of Daphnia pulicaria

    Get PDF
    The combined influence of a pesticide (carbaryl) and a cyanotoxin (microcystin LR) on the life history of Daphnia pulicaria was investigated. At the beginning of the experiments animals were pulse exposed to carbaryl for 24 h and microcystins were delivered bound in Microcystis’ cells at different, sub-lethal concentrations (chronic exposure). In order to determine the actual carbaryl concentrations in the water LC–MS/MS was used. For analyses of the cyanotoxin concentration in Daphnia’s body enzyme-linked immunosorbent assay (ELISA) was used. Individual daphnids were cultured in a flow-through system under constant light (16 h of light: 8 h of dark), temperature (20°C), and food conditions (Scenedesmus obliquus, 1 mg of C l−1). The results showed that in the treatments with carbaryl egg numbers per female did not differ significantly from controls, but the mortality of newborns increased significantly. Increasing microcystin concentrations significantly delayed maturation, reduced size at first reproduction, number of eggs, and newborns. The interaction between carbaryl and Microcystis was highly significant. Animals matured later and at a smaller size than in controls. The number of eggs per female was reduced as well. Moreover, combined stressors caused frequent premature delivery of offspring with body deformations such as dented carapax or an undeveloped heart. This effect is concluded to be synergistic and could not be predicted from the effects of the single stressors.
    • 

    corecore