43 research outputs found

    Intermediate filament-like proteins in bacteria and a cytoskeletal function in Streptomyces

    Get PDF
    Actin and tubulin cytoskeletons are conserved and widespread in bacteria. A strikingly intermediate filament (IF)-like cytoskeleton, composed of crescentin, is also present in Caulobacter crescentus and determines its specific cell shape. However, the broader significance of this finding remained obscure, because crescentin appeared to be unique to Caulobacter. Here we demonstrate that IF-like function is probably a more widespread phenomenon in bacteria. First, we show that 21 genomes of 26 phylogenetically diverse species encoded uncharacterized proteins with a central segmented coiled coil rod domain, which we regarded as a key structural feature of IF proteins and crescentin. Experimental studies of three in silico predicted candidates from Mycobacterium and other actinomycetes revealed a common IF-like property to spontaneously assemble into filaments in vitro. Furthermore, the IF-like protein FilP formed cytoskeletal structures in the model actinomycete Streptomyces coelicolor and was needed for normal growth and morphogenesis. Atomic force microscopy of living cells revealed that the FilP cytoskeleton contributed to mechanical fitness of the hyphae, thus closely resembling the function of metazoan IF. Together, the bioinformatic and experimental data suggest that an IF-like protein architecture is a versatile design that is generally present in bacteria and utilized to perform diverse cytoskeletal tasks

    The Limits of Lawyering: Legal Opinions in Structured Finance

    Get PDF
    Significant controversy surrounds the issuance of legal opinions in structured finance transactions, particularly where accountants separately use these opinions, beyond their traditional primary use, for determining whether to characterize the transactions as debt. Reflecting at its core the unresolved boundaries between public and private in financial transactions, this controversy raises important issues of first impression: To what extent, for example, should lawyers be able to issue legal opinions that create negative externalities? Furthermore, what should differentiate the roles of lawyers and accountants in disclosing information to investors? Resolution of these issues not only helps to demystify the mystique, and untangle the morass, of legal-opinion giving but also affects the very viability of the securitization industry, which dominates American, and increasingly global, financing

    Coiled coil Cytoskeleton in Bacterial Cell Architecture : Studies of Growth and Development in Streptomyces

    No full text
    Bacterial cytoskeleton is an exciting and relatively new field of research. Recent findings have proven that microbes are well-organized and neatly structured organisms. In this study we have shown that intermediate filament-like proteins with a characteristic rod domain architecture of coiled coil segments separated by non-coiled coil linkers, are widely spread among bacteria. We identified and characterized an intermediate filament-like protein (named FilP after filamentous protein) in Streptomyces coelicolor. It shares the characteristic biochemical property of eukaryotic intermediate filaments of formation of spontaneous filaments in vitro without requiring any energy or co-factor. We have provided here a preliminary model of its assembly in vitro. FilP also forms in vivo filaments in S. coelicolor hyphae, which are strongest at the sub-apical location of growing vegetative hyphae. We have proposed that FilP cytoskeletal network provides rigidity to the hyphae, especially at the growing tips, by interacting with an essential coiled coil protein DivIVA and possibly other partner elements, yet to be found. S. coelicolor is a well-studied model organism with a complicated life cycle. It germinates from a spore and spreads by forming branched vegetative hyphae. Lack of nutrients in the environment initiates formation of aerial hyphae in the air, perpendicular to the vegetative ones. The aerial hyphae differentiate into spore chains and eventually grey-pigmented dispersed individual spores are released. The signals involved in sporulation including cell division and chromosome segregation are not clear yet. We characterized here a novel locus consisting of two genes: a small putative membrane protein with no defined function, named SmeA and a member of the SpoIIIE/FtsK family, called SffA. The expression of this locus appears to be dependent on whiA and whiG-whiH-whiI pathways. This finding is intriguing as it can provide insight to the relationship between two apparently unrelated pathways, both leading to the same function of septation and maturation during sporulation

    Coiled coil Cytoskeleton in Bacterial Cell Architecture : Studies of Growth and Development in Streptomyces

    No full text
    Bacterial cytoskeleton is an exciting and relatively new field of research. Recent findings have proven that microbes are well-organized and neatly structured organisms. In this study we have shown that intermediate filament-like proteins with a characteristic rod domain architecture of coiled coil segments separated by non-coiled coil linkers, are widely spread among bacteria. We identified and characterized an intermediate filament-like protein (named FilP after filamentous protein) in Streptomyces coelicolor. It shares the characteristic biochemical property of eukaryotic intermediate filaments of formation of spontaneous filaments in vitro without requiring any energy or co-factor. We have provided here a preliminary model of its assembly in vitro. FilP also forms in vivo filaments in S. coelicolor hyphae, which are strongest at the sub-apical location of growing vegetative hyphae. We have proposed that FilP cytoskeletal network provides rigidity to the hyphae, especially at the growing tips, by interacting with an essential coiled coil protein DivIVA and possibly other partner elements, yet to be found. S. coelicolor is a well-studied model organism with a complicated life cycle. It germinates from a spore and spreads by forming branched vegetative hyphae. Lack of nutrients in the environment initiates formation of aerial hyphae in the air, perpendicular to the vegetative ones. The aerial hyphae differentiate into spore chains and eventually grey-pigmented dispersed individual spores are released. The signals involved in sporulation including cell division and chromosome segregation are not clear yet. We characterized here a novel locus consisting of two genes: a small putative membrane protein with no defined function, named SmeA and a member of the SpoIIIE/FtsK family, called SffA. The expression of this locus appears to be dependent on whiA and whiG-whiH-whiI pathways. This finding is intriguing as it can provide insight to the relationship between two apparently unrelated pathways, both leading to the same function of septation and maturation during sporulation

    Coiled coil Cytoskeleton in Bacterial Cell Architecture : Studies of Growth and Development in Streptomyces

    No full text
    Bacterial cytoskeleton is an exciting and relatively new field of research. Recent findings have proven that microbes are well-organized and neatly structured organisms. In this study we have shown that intermediate filament-like proteins with a characteristic rod domain architecture of coiled coil segments separated by non-coiled coil linkers, are widely spread among bacteria. We identified and characterized an intermediate filament-like protein (named FilP after filamentous protein) in Streptomyces coelicolor. It shares the characteristic biochemical property of eukaryotic intermediate filaments of formation of spontaneous filaments in vitro without requiring any energy or co-factor. We have provided here a preliminary model of its assembly in vitro. FilP also forms in vivo filaments in S. coelicolor hyphae, which are strongest at the sub-apical location of growing vegetative hyphae. We have proposed that FilP cytoskeletal network provides rigidity to the hyphae, especially at the growing tips, by interacting with an essential coiled coil protein DivIVA and possibly other partner elements, yet to be found. S. coelicolor is a well-studied model organism with a complicated life cycle. It germinates from a spore and spreads by forming branched vegetative hyphae. Lack of nutrients in the environment initiates formation of aerial hyphae in the air, perpendicular to the vegetative ones. The aerial hyphae differentiate into spore chains and eventually grey-pigmented dispersed individual spores are released. The signals involved in sporulation including cell division and chromosome segregation are not clear yet. We characterized here a novel locus consisting of two genes: a small putative membrane protein with no defined function, named SmeA and a member of the SpoIIIE/FtsK family, called SffA. The expression of this locus appears to be dependent on whiA and whiG-whiH-whiI pathways. This finding is intriguing as it can provide insight to the relationship between two apparently unrelated pathways, both leading to the same function of septation and maturation during sporulation

    Characteristics of 29 novel atypical SLCs of MFS type : evolutionary conservation, predicted structure and neuronal co-expression

    No full text
    Solute carriers (SLCs) are vital as they are responsible for a major part of the molecular transport over lipid bilayers. At present, there are 430 identified SLCs, of which 28 are called atypical SLCs of major facilitator superfamily (MFS) type. These are MFSD1, 2A, 2B, 3, 4A, 4B, 5, 6, 6L, 7, 8, 9, 10, 11, 12, 13A, 14A, 14B; SV2A, SV2B, SV2C, SVOP, SVOPL; SPNS1, SPNS2, SPNS3; UNC93A and UNC93B1, and we studied their fundamental properties. We also included CLN3, an atypical SLC not yet belonging to any Pfam clan, because its involvement in the same neuronal degenerative disorders as MFSD8. With phylogenetic analyses and bioinformatic sequence comparisons, the proteins were divided into 15 families, denoted Atypical MFS Transporter Families (AMTF1-15). Hidden Markov models were used to identify orthologues from human to D.melanogaster and C.elegans. Topology predictions revealed 12 transmembrane segments (for all except CLN3), corresponding to the common MFS structure. With single-cell RNA sequencing and in situ proximity ligation assay on brain cells, co-expressions of several atypical SLC were identified. Finally, the transcription levels of all genes were analysed in the hypothalamic N25/2 cell line after complete amino acid starvation, showing altered expression levels for several atypical SLCs.

    SLC38A10 (SNAT10) is Located in ER and Golgi Compartments and Has a Role in Regulating Nascent Protein Synthesis.

    No full text
    The solute carrier (SLC) family-38 of transporters has eleven members known to transport amino acids, with glutamine being a common substrate for ten of them, with SLC38A9 being the exception. In this study, we examine the subcellular localization of SNAT10 in several independent immortalized cell lines and stem cell-derived neurons. Co-localization studies confirmed the SNAT10 was specifically localized to secretory organelles. SNAT10 is expressed in both excitatory and inhibitory neurons in the mouse brain, predominantly in the endoplasmic reticulum, and in the Golgi apparatus. Knock-down experiments of SNAT10, using Slc38a10-specific siRNA in PC12 cells reduced nascent protein synthesis by more than 40%, suggesting that SNAT10 might play a role in signaling pathways that regulate protein synthesis, and may act as a transceptor in a similar fashion to what has been shown previously for SLC38A2 (SNAT2) and SNAT9(SLC38A9)

    Sequences and their shared identities from Characteristics of 29 novel atypical solute carriers of major facilitator superfamily type: evolutionary conservation, predicted structure and neuronal co-expression

    No full text
    The EMS file 1 is combined of three sheets, where the first includes all sequences used in the analyses. The second sheet (Atypical SLC matric 1) includes all sequences comparisons between the atypical SLCs, where the percentage represent sequence identities. Those pairs of proteins sharing more than 20 % identities (grey) could potentially constitute an SLC family. The third sheet (MFS matrix) is also a matrix showing sequence identities between the atypical SLCs and known SLC proteins originating from the MFS Pfam clan. Sequences sharing at least 20 % sequence identities are marked in grey
    corecore