276 research outputs found

    TASTE ABATEMENT AND CHARACTERIZATION OF DISPERSIBLE TABLETS OF ARTEMETHER PREPARED BY HOT MELT EXTRUSION

    Get PDF
    Objective: The aim of this study was to formulate and evaluate a taste-masked formulation using hot melt extrusion approach for artemether.Methods: Taste masking of artemether was done by preparing solid dispersion with coating polymer kollicoatsmartseal 30D using hot melt extrusion. The prepared solid dispersion was subjected to taste masking evaluation like sensory evaluation parameters against five levels set for taste evaluation using artemether as control standard along with in vitro release studies in simulated salivery fluid. After taste evaluation of solid dispersion was subjected to the formulation of dispersible tablets by direct compression method. The final taste masking evaluation of dispersible tablets of solid dispersion containing artemether were done by a sensory evaluation panel of nine members along with in vitro release study in simulated salivary and gastric fluid.Results: The percent drug content was found 35.09±0.06 % in solid dispersion. The drug excipients compatibility studies performed with the help of FTIR instrument and DSC that indicates there were no interactions between drug and polymers. Solid dispersions (1:1, 1:2, 1:3 drug polymer ratio) of artemether were evaluated by sensory evaluation panel from which 1:3 drug: polymer solid dispersion was found more palatable. Release rate study in simulated salivary fluid shown no release but shows release of drug in simulated gastric fluids which indicates that the drug was taste masked. The optimized batch of dispersible tablets (F1) were subjected for evaluation parameters like dispersion time (70±1.90), wetting time (63±1.86), etc. Dissolution studies of optimized formulation indicated that the polymer does not allow drug to release in simulated salivery pH 6.8 but shows immediate release in simulated gastric pH which also confirms taste masking efficiency of polymer. Final optimized F1 batch evaluated for taste masking evaluation by sensory evaluation panel using pure drug as control standard found to be palatable.Conclusion: It may be concluded that kollicoatsmartseal 30D could mask the taste of the drug in salivary pH and shows drug release at gastric pH which confirms its efficiency for taste masking

    Association between mean platelet volume levels and inflammation in SLE patients presented with arthritis

    Get PDF
    Background: Systemic lupus erythematosus (SLE) may be characterized by periods of remissions and chronic or acute relapses. The complexity of clinical presentation of the SLE patients leads to incorrect evaluation of disease activity. Mean platelet volume (MPV) has been studied as a simple inflammatory marker in several diseases. There is no study in the literature about MPV levels in adult SLE patients with arthritis.Objectives: We aimed to investigate the MPV levels in the SLE population with arthritis during and between activations.Methods: The study consisted of 44 SLE patients with arthritis in activation period (Group 1), the same 44 SLE patients with arthritis in remission period (Group 2) and 44 healthy controls (Group 3). Erythrocyte sedimentation rate (ESR), creactive protein (CRP), white blood cell count, platelet count, and mean platelet volume (MPV) levels were retrospectively recorded from patient files.Results: The mean ages of the SLE subjects were 42 ± 16 years, while the mean ages of controls was 41 ± 17 years. MPV was significantly lower in Group 1(7.66±0.89fL) than in Group 2 (8.61±1.06 fL) and Group 3(8.62±1.11fL) (p<0.0001). The differences between groups reached statistical significance.Conclusions: We suggest that MPV levels decrease in patients with arthritis of SLE activation when compared to the same patients in remission and healthy controls.Key words: Systemic lupus erythematosus, Arthritis, Mean platelet volum

    Everything you Want to Know and Never Dared to ask:A Practical Approach to Employing Challenge-Based Learning in Engineering Ethics

    Get PDF
    Challenge-based learning (CBL) for engineering ethics tasks students with identifying ethical challenges in cooperation with an external partner, e.g., a technology company. As many best-practice parameters of such courses remain unclear, this contribution focuses on a teacher-centric introduction into deploying CBL for engineering ethics. Taking Goodlad's curriculum typology as a point of departure, we discuss practical issues in devising, maintaining and evaluating CBL courses for engineering ethics both in terms of the temporal dimension (before, during and after the course) as well as in terms of the people involved. We will discuss selecting learning objectives, forms of knowledge acquisition, supporting self-organization, and fostering discursive etiquette, as well as cooperative, yet critical attitudes. Additionally, we will delve into strategic matters, e.g., ways to approach potential external partners and maintain fruitful cooperations.</p

    Asymptotic adaptive methods for multi-scale problems in fluid mechanics

    Get PDF
    This paper reports on the results of a three-year research effort aimed at investigating and exploiting the role of physically motivated asymptotic analysis in the design of numerical methods for singular limit problems in fluid mechanics. Such problems naturally arise, among others, in combustion, magneto-hydrodynamics and geophysical fluid mechanics. Typically, they are characterized by multiple space and/or time scales and by the disturbing fact that standard computational techniques fail entirely, are unacceptably expensive, or both. The challenge here is to construct numerical methods which are robust, uniformly accurate, and efficient through different asymptotic regimes and over a wide range of relevant applications. Summaries of multiple scales asymptotic analyses for low Mach number flows, magnetohydrodynamics at small Mach and Alfv´en numbers, and of multiple scales atmospheric flows are provided. These reveal singular balances between selected terms in the respective governing equations within the considered flow regimes. These singularities give rise to problems of severe stiffness, stability, or to dynamic range issues in straightforward numerical discretizations. Aformal mathematical framework for the multiple scales asymptotics is then summarized using the example of multiple length scale – single time scale asymptotics for low Mach number flows. The remainder of the paper focuses on the construction of numerical discretizations for the respective full governing equation systems. These discretizations avoid the pitfalls of singular balances by exploiting the asymptotic results. Importantly, the asymptotics are not used here to derive simplified equation systems, which are then solved numerically. Rather, we aim at numerically integrating the full equation sets and at using the asymptotics only to construct discretizations that do not deteriorate as a singular limit is approached. One important ingredient of this strategy is the numerical identification of a singular limit regime given a set of discrete numerical state variables. This problem is addressed in an exemplary fashion for multiple length – single time scale low Mach number flows in one space dimension. The strategy allows a dynamic determination of an instantaneous relevant Mach number, and it can thus be used to drive the appropriate adjustment of the numerical discretizations when the singular limit regime is approached

    Work environment, volume of activity and staffing in neonatal intensive care units in Italy: results of the SONAR-nurse study

    Get PDF
    Neonatal units' volume of activity, and other quantitative and qualitative variables, such as staffing, workload, work environment, care organization and geographical location, may influence the outcome of high risk newborns. Data about the distribution of these variables and their relationships among Italian neonatal units are lacking

    Work environment, volume of activity and staffing in neonatal intensive care units in Italy: results of the SONAR-nurse study

    Get PDF
    Neonatal units' volume of activity, and other quantitative and qualitative variables, such as staffing, workload, work environment, care organization and geographical location, may influence the outcome of high risk newborns. Data about the distribution of these variables and their relationships among Italian neonatal units are lacking

    Characteristics and freezability of Gir bull semen

    Get PDF
    The present research was undertaken to study the characteristics of fresh and cryo-preserved semen of elite pure breed Gir (Bos indicus) bulls. The mean values of fresh seminal parameters in neat semen viz. seminal volume (ml), sperm concentration (millions/ml), progressive sperm motility (%), live sperm (%), intact acrosome (%), total morphological sperm abnormalities (%), hypo osmotic swelling (HOS %) and sperm penetration distance (SPD- mm) were 4.99 ± 0.26, 895.33 ± 82.68, 69.10 ± 0.75, 72.16 ± 0.64, 84.42 ± 0.77, 15.96 ± 0.44, 60.12 ± 1.19 and 31.32 ± 0.70, respectively. Sperm concentration, individual motility, live sperm, total sperm abnormalities and sperm penetration distance differed significantly between bulls. The semen was extended, filled and sealed in 0.25 ml straws maintaining 20 million spermatozoa/straw and cryo-preserved using programmable bio freezer (IMV). Cryo-preserved semen was assessed 24 h after freezing and immediately after thawing. Freezing significantly lowered progressive sperm motility (69.10 ± 0.75 vs 53.81 ± 0.61), intact acrosome (84.42 ± 0.77 vs 75.69 ± 1.10), HOST (60.12 ± 1.19 vs 55.71 ±1.33) and CMPT (31.32 ± 0.70 vs 27.97 ±0.72). Whereas, significantly higher percentages of sperm abnormalities (15.96 ± 0.44 vs 16.92 ± 0.57) were observed after freezing

    HapBead: on-skin microfluidic haptic interface using tunable bead

    Get PDF
    On-skin haptic interfaces using soft elastomers which are thin and flexible have significantly improved in recent years. Many are focused on vibrotactile feedback that requires complicated parameter tuning. Another approach is based on mechanical forces created via piezoelectric devices and other methods for non-vibratory haptic sensations like stretching, twisting. These are often bulky with electronic components and associated drivers are complicated with limited control of timing and precision. This paper proposes HapBead, a new on-skin haptic interface that is capable of rendering vibration like tactile feedback using microfluidics. HapBead leverages a microfluidic channel to precisely and agilely oscillate a small bead via liquid flow, which then generates various motion patterns in channel that creates highly tunable haptic sensations on skin. We developed a proof-of-concept design to implement thin, flexible and easily affordable HapBead platform, and verified its haptic rendering capabilities via attaching it to users’ fingertips. A study was carried out and confirmed that participants could accurately tell six different haptic patterns rendered by HapBead. HapBead enables new wearable display applications with multiple integrated functionalities such as on-skin haptic doodles, mixed reality haptics and visual-haptic displays

    Relation between charge carrier mobility and lifetime in organic photovoltaics

    Get PDF
    The relationship between charge carrier lifetime and mobility in a bulk heterojunction based organic solar cell, utilizing diketopyrrolopyrole- naphthalene co-polymer and PC71BM in the photoactive blend layer, is investigated using the photoinduced charge extraction by linearly increasing voltage technique. Light intensity, delay time, and temperature dependent experiments are used to quantify the charge carrier mobility and density as well as the temperature dependence of both. From the saturation of photoinduced current at high laser intensities, it is shown that Langevin-type bimolecular recombination is present in the studied system. The charge carrier lifetime, especially in Langevin systems, is discussed to be an ambiguous and unreliable parameter to determine the performance of organic solar cells, because of the dependence of charge carrier lifetime on charge carrier density, mobility, and type of recombination. It is revealed that the relation between charge mobility (μ) and lifetime (τ) is inversely proportional, where the μτ product is independent of temperature. The results indicate that in photovoltaic systems with Langevin type bimolecular recombination, the strategies to increase the charge lifetime might not be beneficial because of an accompanying reduction in charge carrier mobility. Instead, the focus on non-Langevin mechanisms of recombination is crucial, because this allows an increase in the charge extraction rate by improving the carrier lifetime, density, and mobility simultaneously
    corecore