21 research outputs found

    Endothelial cell CD36 deficiency prevents normal angiogenesis and vascular repair

    Get PDF
    Endothelial cells (ECs) maintain vascular integrity and mediate vascular repair and angiogenesis, by which new blood vessels are formed from pre-existing blood vessels. Hyperglycemia has been shown to increase EC angiogenic potential. However, few studies have investigated effects of fatty acids (FAs) on EC angiogenesis. Cluster of differentiation 36 (CD36) is a FA transporter expressed by ECs, but its role in EC proliferation, migration, and angiogenesis is unknown. We sought to determine if circulating FAs regulate angiogenic function in a CD36-dependent manner. CD36-dependent effects of FAs on EC proliferation and migration of mouse heart ECs (MHECs) and lung ECs (MLECs) were studied. We used both silencing RNA and antisense oligonucleotides to reduce CD36 expression. Oleic acid (OA) did not affect EC proliferation, but significantly increased migration of ECs in wound healing experiments. CD36 knockdown prevented OA-induced increases in wound healing potential. In EC transwell migration experiments, OA increased recruitment and migration of ECs, an effect abolished by CD36 knockdown. Phospho-AMP-activated protein kinase (AMPK) increased in MHECs exposed to OA in a CD36-dependent manner. To test whethe

    Cardiomyocyte Aldose Reductase Causes Heart Failure and Impairs Recovery from Ischemia

    Get PDF
    <div><p>Aldose reductase (AR), an enzyme mediating the first step in the polyol pathway of glucose metabolism, is associated with complications of diabetes mellitus and increased cardiac ischemic injury. We investigated whether deleterious effects of AR are due to its actions specifically in cardiomyocytes. We created mice with cardiac specific expression of human AR (hAR) using the α–myosin heavy chain (MHC) promoter and studied these animals during aging and with reduced fatty acid (FA) oxidation. hAR transgenic expression did not alter cardiac function or glucose and FA oxidation gene expression in young mice. However, cardiac overexpression of hAR caused cardiac dysfunction in older mice. We then assessed whether hAR altered heart function during ischemia reperfusion. hAR transgenic mice had greater infarct area and reduced functional recovery than non-transgenic littermates. When the hAR transgene was crossed onto the PPAR alpha knockout background, another example of greater heart glucose oxidation, hAR expressing mice had increased heart fructose content, cardiac fibrosis, ROS, and apoptosis. In conclusion, overexpression of hAR in cardiomyocytes leads to cardiac dysfunction with aging and in the setting of reduced FA and increased glucose metabolism. These results suggest that pharmacological inhibition of AR will be beneficial during ischemia and in some forms of heart failure.</p> </div

    CD36 Deficiency Impairs the Small Intestinal Barrier and Induces Subclinical Inflammation in MiceSummary

    Get PDF
    Background & Aims: CD36 has immunometabolic actions and is abundant in the small intestine on epithelial, endothelial, and immune cells. We examined the role of CD36 in gut homeostasis by using mice null for CD36 (CD36KO) and with CD36 deletion specific to enterocytes (Ent-CD36KO) or endothelial cells (EC-CD36KO). Methods: Intestinal morphology was evaluated by using immunohistochemistry and electron microscopy. Intestinal inflammation was determined from neutrophil infiltration and expression of cytokines, toll-like receptors, and cyclooxygenase-2. Barrier integrity was assessed from circulating lipopolysaccharide and dextran administered intragastrically. Epithelial permeability to luminal dextran was visualized by using two-photon microscopy. Results: The small intestines of CD36KO mice fed a chow diet showed several abnormalities including extracellular matrix accumulation with increased expression of extracellular matrix proteins, evidence of neutrophil infiltration, inflammation, and compromised barrier function. Electron microscopy showed shortened desmosomes with decreased desmocollin 2 expression. Systemically, leukocytosis and neutrophilia were present together with 80% reduction of anti-inflammatory Ly6Clow monocytes. Bone marrow transplants supported the primary contribution of non-hematopoietic cells to the inflammatory phenotype. Specific deletion of endothelial but not of enterocyte CD36 reproduced many of the gut phenotypes of germline CD36KO mice including fibronectin deposition, increased interleukin 6, neutrophil infiltration, desmosome shortening, and impaired epithelial barrier function. Conclusions: CD36 loss results in chronic neutrophil infiltration of the gut, impairs barrier integrity, and systemically causes subclinical inflammation. Endothelial cell CD36 deletion reproduces the major intestinal phenotypes. The findings suggest an important role of the endothelium in etiology of gut inflammation and loss of epithelial barrier integrity. Keywords: Neutrophils, Endothelium, Fibronectin, Collage

    Adipose Specific Lipoprotein Lipase Deficiency More Profoundly Affects Brown Than White Fat Biology

    No full text
    Adipose fat storage is thought to require uptake of circulating triglyceride (TG)-derived fatty acids via lipoprotein lipase (LpL). To determine how LpL affects the biology of adipose tissue, we created adipose specific LpL knockout (ATLO) mice, and compared them with whole body LpL knockout mice rescued with muscle LpL expression (MCK/L0) and wild type (WT) mice. ATLO LpL mRNA and activity were reduced, respectively, 75% and 70% in gonadal adipose tissue (GAT), 90% and 80% in subcutaneous (SCAT), and 84% and 85% in brown adipose tissue (BAT). ATLO mice had increased plasma TG levels associated with reduced chylomicron TG uptake into BAT and lung. ATLO BAT, but not GAT, had altered TG composition. GAT from MCK/L0 was smaller and contained less polyunsaturated fatty acids in TG, while GAT from ATLO was normal unless LpL was overexpressed in muscle. High fat diet feeding led to less adipose in MCK/L0 mice but TG acyl composition in SCAT and BAT reverted to that of WT. Therefore, adipocyte LpL in BAT modulates plasma lipoprotein clearance and the greater metabolic activity of this depot makes its lipid composition more dependent on LpL-mediated uptake. Loss of adipose LpL reduces fat accumulation only if accompanied by greater LpL activity in muscle. These data support the role of LpL as the gate-keeper for tissue lipid distributio

    ApoC-III inhibits clearance of triglyceride-rich lipoproteins through LDL family receptors.

    No full text
    Hypertriglyceridemia is an independent risk factor for cardiovascular disease, and plasma triglycerides (TGs) correlate strongly with plasma apolipoprotein C-III (ApoC-III) levels. Antisense oligonucleotides (ASOs) for ApoC-III reduce plasma TGs in primates and mice, but the underlying mechanism of action remains controversial. We determined that a murine-specific ApoC-III-targeting ASO reduces fasting TG levels through a mechanism that is dependent on low-density lipoprotein receptors (LDLRs) and LDLR-related protein 1 (LRP1). ApoC-III ASO treatment lowered plasma TGs in mice lacking lipoprotein lipase (LPL), hepatic heparan sulfate proteoglycan (HSPG) receptors, LDLR, or LRP1 and in animals with combined deletion of the genes encoding HSPG receptors and LDLRs or LRP1. However, the ApoC-III ASO did not lower TG levels in mice lacking both LDLR and LRP1. LDLR and LRP1 were also required for ApoC-III ASO-induced reduction of plasma TGs in mice fed a high-fat diet, in postprandial clearance studies, and when ApoC-III-rich or ApoC-III-depleted lipoproteins were injected into mice. ASO reduction of ApoC-III had no effect on VLDL secretion, heparin-induced TG reduction, or uptake of lipids into heart and skeletal muscle. Our data indicate that ApoC-III inhibits turnover of TG-rich lipoproteins primarily through a hepatic clearance mechanism mediated by the LDLR/LRP1 axis

    Cardiac dysfunction is observed at an earlier age in MHC-hAR/<i>Ppara<sup>−/−</sup></i> mice.

    No full text
    <p>(<b>A</b>) Representative echocardiographic images of LVD in the mice (age = 7 months). (<b>B–D</b>) Echocardiography showed increased LVDs, LVDd and FS in MHC-hAR/<i>Ppara<sup>−/−</sup></i> mice. FS, fractional shortening; LVDs, left ventricular end-systolic dimension. Data are shown as mean ± SD. *P<0.05 and <sup>§</sup>P<0.001 versus littermate controls.</p

    Increased cardiac fibrosis, apoptosis and ROS in MHC-hAR/<i>Ppara</i><sup>−/−</sup> mice.

    No full text
    <p>(<b>A</b>) Cardiac fibrosis was detected using Masson's trichrome stain (original magnification, ×100) (<b>B</b>) Cardiac ventricular tissues were stained for DNA fragmentation by TUNEL protocol (original magnification, ×200). Apoptotic cardiomyocytes containing fragmented nuclear chromatin exhibited dark brown nuclear staining (arrows). (<b>C</b>) Histological analysis of heart tissues using dihydroethidium staining to detect ROS (original magnification, ×100).</p
    corecore