1,378 research outputs found

    Evaluating the perceptions of hoteliers- on web3

    Get PDF
    The aim of this study was to assess hoteliers' impressions of Web3, which includes blockchain, cryptocurrencies, smart contracts, NFTs, and the metaverse. The study comprises an analysis of prior research on Web3 and its uses in the hotel industry, followed by interviews with hoteliers. The key conclusions include what hoteliers don't expect to happen because of Web3, as well as what will. resulting in suggestions for Web3 companies and other research topics

    Normal values and within-subject variability of cardiac I-123 MIBG scintigraphy in healthy individuals: Implications for clinical studies

    Get PDF
    Background: Although several myocardial iodine 123 metaiodobenzylguanidine (MIBG) indices are increasingly used to detect alterations in myocardial sympathetic activity in various forms of cardiac pathology, published measurements of normal values and within-subject variability are lacking. Methods and Results: Twenty-five healthy volunteers underwent planar and single photon emission computed tomography (SPECT) imaging. Heart-mediastinum ratio (H/M) and myocardial washout were calculated from planar images comparing three different methods for the assessment of myocardial activity: (1) global region over the myocardium (cavity included), (2) global region over the myocardium (cavity excluded), and (3) fixed small myocardial region. Segmental (relative) uptake and washout were assessed by SPECT. For all MIBG indices, the interindividual variation was the lowest for methods 1 and 2. In SPECT this variation was low for relative segmental uptake compared with washout. In 9 subjects a second MIBG scintigraphy was performed after 3 months. The within-subject variability of H/M and washout assessed by planar methods 1 and 2 was 5%, whereas it was approximately 9% for planar method 3. For relative segmental uptake from SPECT, this variability was 5%. Conclusion: MIBG H/M (planar) and relative segmental uptake (SPECT) show a low interindividual and within-subject variability. This enables the detection of small (regional) variations in myocardial sympathetic nervous function, especially to monitor the effect of therapeutic interventions in patients with various cardiac diseases. (J Nucl Cardiol 2004;11: 126-33.

    Spectral broadening of interacting pigments: Polarized absorption by photosynthetic proteins.

    Get PDF
    Excitonic interaction between pigment molecules is largely responsible for the static and dynamic spectroscopic properties of photosynthetic pigment-proteins. This paper provides a new description of its effect on polarized absorption spectroscopy, in particular on circular dichroism (CD). We investigate excitonic spectra of finite width and use "spectral moments" to compare 1) inhomogeneously broadened excitonic spectra, 2) spectra that are (homogeneously broadened by vibrations or electron-phonon interaction, and 3) spectra that are simulated by applying convolution after the interaction has been evaluated. Two cases are distinguished. If the excitonic splitting is smaller than the width of the interacting absorption bands, the broadening of the excitonic spectrum can be approximated by a convolution approach, although a correction is necessary for CD spectra. If the excitonic splitting exceeds the bandwidth, the well-known exchange narrowing occurs. We demonstrate that this is accompanied by redistribution of dipole strength and spectral shifts. The magnitude of a CD spectrum is conveniently expressed by its first spectral moment. As will be shown, this is independent of spectral broadening as well as dispersive shifts induced by pigment-protein interactions. Consequently, it provides a simple tool to relate the experimental CD spectrum of a pigment complex to the excitonic interactions from which it originates. To illustrate the potential of the presented framework, the spectroscopy of the LH2 pigment-protein complex from purple bacteria is analyzed and compared for dimer-like and ring-like structures. Furthermore, it is demonstrated that the variability of the CD of chlorosomes from green bacteria can be explained by small changes in the structure of their cylindrical bacteriochlorophyll c subunits
    corecore