2,144 research outputs found

    Effect of thruster pulse length on thruster-exhaust damage of S13G white thermal control coatings

    Get PDF
    Rocket exhaust products which strike thermal control surfaces cause changes in solar absorptance (Alpha Sub s) and thermal emittance (Epsilon) of these surfaces. A study was made of the effect of rocket pulse duration on exhaust damage to S13G white coatings. Two pulse lengths were used - 14 msec and 50 msec. An MMH/N204 bipropellant 5-lb thrust rocket was fired into a simulated space environment with a vacuum of 0.00001 torr, a liquid helium temperature enclosure, and solar radiation. The changes in solar absorptance and thermal emittance of S13G white coatings due to rocket exhaust were made in-situ for total firing times of 58 seconds with 14 msec pulses and 223.7 sec with 50 msec pulses. The solar absorptance of S13G increased 25 percent due to 223.7 sec of exposure to 50 msec pulses and the thermal emittance was unaffected. The ratio of Alpha Sub s/Epsilon therefore increased by 25 percent. The short 14 msec pulse exhaust exposure caused between 40 and 70 percent increase in solar absorptance and a decrease of between 13 and 18 percent in thermal emittance. The corresponding increase in Alpha Sub s/Epsilon ratio was between 80 and 100 percent. Ultraviolet radiation was present in the short pulse test and may have contributed to the large damage of that test

    Calculation of the unitary part of the Bures measure for N-level quantum systems

    Full text link
    We use the canonical coset parameterization and provide a formula with the unitary part of the Bures measure for non-degenerate systems in terms of the product of even Euclidean balls. This formula is shown to be consistent with the sampling of random states through the generation of random unitary matrices

    The density of stationary points in a high-dimensional random energy landscape and the onset of glassy behaviour

    Full text link
    We calculate the density of stationary points and minima of a N1N\gg 1 dimensional Gaussian energy landscape. We use it to show that the point of zero-temperature replica symmetry breaking in the equilibrium statistical mechanics of a particle placed in such a landscape in a spherical box of size L=RNL=R\sqrt{N} corresponds to the onset of exponential in NN growth of the cumulative number of stationary points, but not necessarily the minima. For finite temperatures we construct a simple variational upper bound on the true free energy of the R=R=\infty version of the problem and show that this approximation is able to recover the position of the whole de-Almeida-Thouless line.Comment: a revised and shortened version with a few typos corrected and references added. To appear in JETP Letter

    Almost-Hermitian Random Matrices: Crossover from Wigner-Dyson to Ginibre eigenvalue statistics

    Full text link
    By using the method of orthogonal polynomials we analyze the statistical properties of complex eigenvalues of random matrices describing a crossover from Hermitian matrices characterized by the Wigner- Dyson statistics of real eigenvalues to strongly non-Hermitian ones whose complex eigenvalues were studied by Ginibre. Two-point statistical measures (as e.g. spectral form factor, number variance and small distance behavior of the nearest neighbor distance distribution p(s)p(s)) are studied in more detail. In particular, we found that the latter function may exhibit unusual behavior p(s)s5/2p(s)\propto s^{5/2} for some parameter values.Comment: 4 pages, RevTE

    Statistics of S-matrix poles in Few-Channel Chaotic Scattering: Crossover from Isolated to Overlapping Resonances

    Full text link
    We derive the explicit expression for the distribution of resonance widths in a chaotic quantum system coupled to continua via M equivalent open channels. It describes a crossover from the χ2\chi^2 distribution (regime of isolated resonances) to a broad power-like distribution typical for the regime of overlapping resonances. The first moment is found to reproduce exactly the Moldauer-Simonius relation between the mean resonance width and the transmission coefficient. This fact may serve as another manifestation of equivalence between the spectral and the ensemble averaging.Comment: 4 two-column pages, RevTex. text is slightly modified; some misprints are correcte

    Numerical treatment of the hyperboloidal initial value problem for the vacuum Einstein equations. I. The conformal field equations

    Get PDF
    This is the first in a series of articles on the numerical solution of Friedrich's conformal field equations for Einstein's theory of gravity. We will discuss in this paper why one should be interested in applying the conformal method to physical problems and why there is good hope that this might even be a good idea from the numerical point of view. We describe in detail the derivation of the conformal field equations in the spinor formalism which we use for the implementation of the equations, and present all the equations as a reference for future work. Finally, we discuss the implications of the assumptions of a continuous symmetry.Comment: 19 pages, LaTeX2

    Third rank Killing tensors in general relativity. The (1+1)-dimensional case

    Get PDF
    Third rank Killing tensors in (1+1)-dimensional geometries are investigated and classified. It is found that a necessary and sufficient condition for such a geometry to admit a third rank Killing tensor can always be formulated as a quadratic PDE, of order three or lower, in a Kahler type potential for the metric. This is in contrast to the case of first and second rank Killing tensors for which the integrability condition is a linear PDE. The motivation for studying higher rank Killing tensors in (1+1)-geometries, is the fact that exact solutions of the Einstein equations are often associated with a first or second rank Killing tensor symmetry in the geodesic flow formulation of the dynamics. This is in particular true for the many models of interest for which this formulation is (1+1)-dimensional, where just one additional constant of motion suffices for complete integrability. We show that new exact solutions can be found by classifying geometries admitting higher rank Killing tensors.Comment: 16 pages, LaTe

    Random graph states, maximal flow and Fuss-Catalan distributions

    Full text link
    For any graph consisting of kk vertices and mm edges we construct an ensemble of random pure quantum states which describe a system composed of 2m2m subsystems. Each edge of the graph represents a bi-partite, maximally entangled state. Each vertex represents a random unitary matrix generated according to the Haar measure, which describes the coupling between subsystems. Dividing all subsystems into two parts, one may study entanglement with respect to this partition. A general technique to derive an expression for the average entanglement entropy of random pure states associated to a given graph is presented. Our technique relies on Weingarten calculus and flow problems. We analyze statistical properties of spectra of such random density matrices and show for which cases they are described by the free Poissonian (Marchenko-Pastur) distribution. We derive a discrete family of generalized, Fuss-Catalan distributions and explicitly construct graphs which lead to ensembles of random states characterized by these novel distributions of eigenvalues.Comment: 37 pages, 24 figure
    corecore