80 research outputs found

    Effects of Lumacaftor/Ivacaftor on Cystic Fibrosis Disease Progression in Children 2 through 5 Years of Age Homozygous for F508del-CFTR: A Phase 2 Placebo-controlled Clinical Trial.

    Get PDF
    RATIONALE Lumacaftor/ivacaftor (LUM/IVA) was shown to be safe and well tolerated in children 2 through 5 years of age with cystic fibrosis (CF) homozygous for F508del-CFTR in a phase 3 open-label study. Improvements in sweat chloride concentration, markers of pancreatic function, and lung clearance index2.5 (LCI2.5), along with increases in growth parameters, suggested the potential for early disease modification with LUM/IVA treatment. OBJECTIVE To further assess the effects of LUM/IVA on CF disease progression in children 2 through 5 years of age using chest magnetic resonance imaging (MRI). METHODS This phase 2 study had two parts: a 48-week, randomized, double-blind, placebo-controlled treatment period in which children 2 through 5 years of age with CF homozygous for F508del-CFTR received either LUM/IVA or placebo (Part 1) followed by an open-label period in which all children received LUM/IVA for an additional 48 weeks (Part 2). We report results from Part 1. The primary endpoint was absolute change from baseline in chest MRI global score at Week 48. Secondary endpoints included absolute change in LCI2.5 through Week 48 and absolute changes in weight-for-age, stature-for-age, and body mass index-for-age z-scores at Week 48. Additional endpoints included absolute changes in sweat chloride concentration, fecal elastase-1 levels, serum immunoreactive trypsinogen, and fecal calprotectin through Week 48. The primary endpoint was analyzed using Bayesian methods, where the actual Bayesian posterior probability of LUM/IVA being superior to placebo in the MRI global chest score at Week 48 was calculated using a vague normal prior distribution; secondary and additional endpoints were analyzed using descriptive summary statistics. RESULTS Fifty-one children were enrolled and received LUM/IVA (n=35) or placebo (n=16). For the change in MRI global chest score at Week 48, the Bayesian posterior probability of LUM/IVA being better than placebo (treatment difference <0; higher score indicating greater abnormality) was 76%; the mean treatment difference was -1.5 (95% credible interval, -5.5 to 2.6). Treatment with LUM/IVA also led to within-group numerical improvements in LCI2.5, growth parameters, and biomarkers of pancreatic function as well as greater decreases in sweat chloride concentration compared with placebo from baseline through Week 48. Safety data were consistent with the established safety profile of LUM/IVA. CONCLUSIONS This placebo-controlled study suggests the potential for early disease modification with LUM/IVA treatment, including that assessed by chest MRI, in children as young as 2 years. Clinical trial registered with ClinicalTrials.gov (NCT03625466)

    GC-MS Analysis of β-Carotene Ethenolysis Products and their Synthesis as Potentially Active Vitamin A Analogues

    Get PDF
    β-Carotene ethenolysis under promotion of well-defined ruthenium catalysts were examined as a novel method of synthesis of vitamin A derivatives. Efficient reaction was promoted by the second-generation Hoveyda catalyst. The products of ethenolysis in positions C15-C15′, C11-C12, and C9-C10 were detected, but cleavage of the C11-C12 double bond predominated. Even better regioselectivity at this position was observed for cross—metathesis between β-carotene and functionalized alkenes

    Effect of lutein and antioxidant dietary supplementation on contrast sensitivity in age-related macular disease:A randomized controlled trial

    Get PDF
    Objective: The aim of the study is to determine the effect of lutein combined with vitamin and mineral supplementation on contrast sensitivity in people with age-related macular disease (ARMD). Design: A prospective, 9-month, double-masked randomized controlled trial. Setting: Aston University, Birmingham, UK and a UK optometric clinical practice. Subjects: Age-related maculopathy (ARM) and atrophic age-related macular degeneration (AMD) participants were randomized (using a random number generator) to either placebo (n = 10) or active (n=15) groups. Three of the placebo group and two of the active group dropped out. Interventions: The active group supplemented daily with 6 mg lutein combined with vitamins and minerals. The outcome measure was contrast sensitivity (CS) measured using the Pelli-Robson chart, for which the study had 80% power at the 5% significance level to detect a change of 0.3log units. Results: The CS score increased by 0.07 ± 0.07 and decreased by 0.02 ± 0.18 log units for the placebo and active groups, respectively. The difference between these values is not statistically significant (z = 0.903, P = 0.376). Conclusion: The results suggest that 6 mg of lutein supplementation in combination with other antioxidants is not beneficial for this group. Further work is required to establish optimum dosage levels

    Identification of alleles of carotenoid pathway genes important for zeaxanthin accumulation in potato tubers

    Get PDF
    We have investigated the genetics and molecular biology of orange flesh colour in potato (Solanum tuberosum L.). To this end the natural diversity in three genes of the carotenoid pathway was assessed by SNP analyses. Association analysis was performed between SNP haplotypes and flesh colour phenotypes in diploid and tetraploid potato genotypes. We observed that among eleven beta-carotene hydroxylase 2 (Chy2) alleles only one dominant allele has a major effect, changing white into yellow flesh colour. In contrast, none of the lycopene epsilon cyclase (Lcye) alleles seemed to have a large effect on flesh colour. Analysis of zeaxanthin epoxidase (Zep) alleles showed that all (diploid) genotypes with orange tuber flesh were homozygous for one specific Zep allele. This Zep allele showed a reduced level of expression. The complete genomic sequence of the recessive Zep allele, including the promoter, was determined, and compared with the sequence of other Zep alleles. The most striking difference was the presence of a non-LTR retrotransposon sequence in intron 1 of the recessive Zep allele, which was absent in all other Zep alleles investigated. We hypothesise that the presence of this large sequence in intron 1 caused the lower expression level, resulting in reduced Zep activity and accumulation of zeaxanthin. Only genotypes combining presence of the dominant Chy2 allele with homozygosity for the recessive Zep allele produced orange-fleshed tubers that accumulated large amounts of zeaxanthin

    The role of the carotenoids, lutein and zeaxanthin, in protecting against age-related macular degeneration: A review based on controversial evidence

    Get PDF
    PURPOSE: A review of the role of the carotenoids, lutein and zeaxanthin, and their function in altering the pathogenesis of age-related macular degeneration (AMD). METHODS: Medline and Embase search. RESULTS: Recent evidence introduces the possibility that lutein and zeaxanthin, carotenoids found in a variety of fruits and vegetables may protect against the common eye disease of macular degeneration. This potential and the lack to slow the progression of macular degeneration, has fueled high public interest in the health benefits of these carotenoids and prompted their inclusion in various supplements. The body of evidence supporting a role in this disease ranges from basic studies in experimental animals to various other clinical and epidemiological studies. Whilst some epidemiological studies suggest a beneficial role for carotenoids in the prevention of AMD, others are found to be unrelated to it. Results of some clinical studies indicate that the risk for AMD is reduced when levels of the carotenoids are elevated in the serum or diet, but this correlation is not observed in other studies. Published data concerning the toxicity of the carotenoids or the optimum dosage of these supplements is lacking. CONCLUSION: An intake of dietary supplied nutrients rich in the carotenoids, lutein and zeaxanthin, appears to be beneficial in protecting retinal tissues, but this is not proven. Until scientifically sound knowledge is available we recommend for patients judged to be at risk for AMD to: alter their diet to more dark green leafy vegetables, wear UV protective lenses and a hat when outdoors. Future investigations on the role of nutrition, light exposure, genetics, and combinations of photodynamic therapy with intravitreal steroid (triamcinolone-acetonide) injections hold potential for future treatment possibilities

    Role of antioxidant enzymes and small molecular weight antioxidants in the pathogenesis of age-related macular degeneration (AMD)

    Get PDF
    corecore