16,068 research outputs found

    The galaxy counterpart of the high-metallicity and 16 kpc impact parameter DLA towards Q0918+1636 - a challenge to galaxy formation models?

    Full text link
    The quasar Q0918+1636 (z=3.07) has an intervening high-metallicity Damped Lyman-alpha Absorber (DLA) along the line of sight, at a redshift of z=2.58. The DLA is located at a large impact parameter of 16.2 kpc, and has an almost solar metallicity. It is shown, that a novel type of cosmological galaxy formation models, invoking a new SNII feedback prescription, the Haardt & Madau (2012) UVB field and explicit treatment of UVB self-shielding, can reproduce the observed characteristics of the DLA. UV radiation from young stellar populations in the galaxy, in particular in the photon energy range 10.36-13.61 eV (relating to Sulfur II abundance), are also considered in the analysis. It is found that a) for L~L* galaxies (at z=2.58), about 10% of the sight-lines through the galaxies at impact parameter 16.2 kpc will display a Sulfur II column density N(SII)>> 1015.82^{15.82} cm2^{-2} (the observed value for the DLA), and b) considering only cases where a near-solar metallicity will be detected at 16.2 kpc impact parameter, the probability distribution of galaxy SFR peaks near the value observed for the DLA galaxy counterpart of ~27 Msun/yr. It is argued, that the bulk of the alpha-elements, like Sulfur, traced by the high metal column density, b=16.2 kpc absorption lines, were produced by evolving young stars in the inner galaxy, and later transported outward by galactic winds.Comment: 22 pages, 24 figures, MNRAS in pres

    CDM, Feedback and the Hubble Sequence

    Get PDF
    We have performed TreeSPH simulations of galaxy formation in a standard LCDM cosmology, including effects of star formation, energetic stellar feedback processes and a meta-galactic UV field, and obtain a mix of disk, lenticular and elliptical galaxies. The disk galaxies are deficient in angular momentum by only about a factor of two compared to observed disk galaxies. The stellar disks have approximately exponential surface density profiles, and those of the bulges range from exponential to r^{1/4}, as observed. The bulge-to-disk ratios of the disk galaxies are consistent with observations and likewise are their integrated B-V colours, which have been calculated using stellar population synthesis techniques. Furthermore, we can match the observed I-band Tully-Fisher (TF) relation, provided that the mass-to-light ratio of disk galaxies, (M/L_I), is about 0.8. The ellipticals and lenticulars have approximately r^{1/4} stellar surface density profiles, are dominated by non-disklike kinematics and flattened due to non-isotropic stellar velocity distributions, again consistent with observations.Comment: 6 pages, incl. 4 figs. To appear in the proceedings of the EuroConference "The Evolution of Galaxies: II - Basic Building Blocks", Ile de La Reunion (France), 16-21 October 2001 (Slightly updated version). A much more comprehensive paper about this work with links to pictures of some of the galaxies can be found at http://babbage.sissa.it/abs/astro-ph/020436

    Spectral density of the Dirac operator in two-flavour QCD

    Full text link
    We compute the spectral density of the (Hermitean) Dirac operator in Quantum Chromodynamics with two light degenerate quarks near the origin. We use CLS/ALPHA lattices generated with two flavours of O(a)-improved Wilson fermions corresponding to pseudoscalar meson masses down to 190 MeV, and with spacings in the range 0.05-0.08 fm. Thanks to the coverage of parameter space, we can extrapolate our data to the chiral and continuum limits with confidence. The results show that the spectral density at the origin is non-zero because the low modes of the Dirac operator do condense as expected in the Banks-Casher mechanism. Within errors, the spectral density turns out to be a constant function up to eigenvalues of approximately 80 MeV. Its value agrees with the one extracted from the Gell-Mann-Oakes-Renner relation

    Lyman alpha Resonant Scattering in Young Galaxies - Predictions from Cosmological Simulations

    Full text link
    We present results obtained with a 3D, Ly alpha radiative transfer code, applied to a fully cosmological galaxy formation simulation. The developed Monte Carlo code is capable of treating an arbitrary distribution of source Ly alpha emission, neutral hydrogen density, temperature, and peculiar velocity of the interstellar medium. We investigate the influence of resonant scattering on the appearance and properties of young galaxies by applying the code to a simulated "Lyman Break Galaxy" at redshift z = 3.6, and of star formation rate 22 M_sun/yr and total Ly alpha luminosity 2.0 X 10^43 erg/s. It is found that resonant scattering of Ly alpha radiation can explain that young galaxies frequently are observed to be more extended on the sky in Ly alpha than in the optical. Moreover, it is shown that, for the system investigated, due to the anisotropic escape of the photons, the appearent maximum surface brightness can differ by a factor of ~15, and the total derived luminosity by a factor of ~4, depending on the orientation of the system relative to the observer.Comment: Letter updated to match version published in Ap

    A dynamical and kinematical model of the Galactic stellar halo and possible implications for galaxy formation scenarios

    Full text link
    We re-analyse the kinematics of the system of blue horizontal branch field (BHBF) stars in the Galactic halo (in particular the outer halo), fitting the kinematics with the model of radial and tangential velocity dispersions in the halo as a function of galactocentric distance r proposed by Sommer-Larsen, Flynn & Christensen (1994), using a much larger sample (almost 700) of BHBF stars. The basic result is that the character of the stellar halo velocity ellipsoid changes markedly from radial anisotropy at the sun to tangential anisotropy in the outer parts of the Galactic halo (r greater than approx 20 kpc). Specifically, the radial component of the stellar halo's velocity ellipsoid decreases fairly rapidly beyond the solar circle, from approx 140 +/- 10 km/s at the sun, to an asymptotic value of 89 +/- 19 km/s at large r. The rapid decrease in the radial velocity dispersion is matched by an increase in the tangential velocity dispersion, with increasing r. Our results may indicate that the Galaxy formed hierarchically (partly or fully) through merging of smaller subsystems - the 'bottom-up' galaxy formation scenario, which for quite a while has been favoured by most theorists and recently also has been given some observational credibility by HST observations of a potential group of small galaxies, at high redshift, possibly in the process of merging to a larger galaxy (Pascarelle et al 1996).Comment: Latex, 16 pages. 2 postscript figures. Submitted to the Astrophysical Journal. also available at http://astro.utu.fi/~cflynn/outerhalo.htm

    Towards a new determination of the QCD Lambda parameter from running couplings in the three-flavour theory

    Full text link
    We review our new strategy and current status towards a high precision computation of the Lambda parameter from three-flavour simulations in QCD. To reach this goal we combine specific advantages of the Schr\"odinger functional and gradient flow couplings.Comment: 7 pages, 3 figures; Proceedings of the 32nd International Symposium on Lattice Field Theory; 23-28 June, 2014, Columbia University, New Yor

    High efficiency thermionic converter studies

    Get PDF
    The objective is to improve thermionic converter performance by means of reduced interelectrode losses, greater emitter capabilities, and lower collector work functions until the converter performance level is suitable for out-of-core space reactors and radioisotope generators. Electrode screening experiments have identified several promising collector materials. Back emission work function measurements of a ZnO collector in a thermionic diode have given values less than 1.3 eV. Diode tests were conducted over the range of temperatures of interest for space power applications. Enhanced mode converter experiments have included triodes operated in both the surface ionization and plasmatron modes. Pulsed triodes were studied as a function of pulse length, pulse potential, inert gas fill pressure, cesium pressure, spacing, emitter temperature and collector temperature. Current amplifications (i.e., mean output current/mean grid current) of several hundred were observed up to output current densities of one amp/sq cm. These data correspond to an equivalent arc drop less than 0.1 eV

    A Statistical Model for Simultaneous Template Estimation, Bias Correction, and Registration of 3D Brain Images

    Full text link
    Template estimation plays a crucial role in computational anatomy since it provides reference frames for performing statistical analysis of the underlying anatomical population variability. While building models for template estimation, variability in sites and image acquisition protocols need to be accounted for. To account for such variability, we propose a generative template estimation model that makes simultaneous inference of both bias fields in individual images, deformations for image registration, and variance hyperparameters. In contrast, existing maximum a posterori based methods need to rely on either bias-invariant similarity measures or robust image normalization. Results on synthetic and real brain MRI images demonstrate the capability of the model to capture heterogeneity in intensities and provide a reliable template estimation from registration

    Chiral symmetry breaking in QCD Lite

    Full text link
    A distinctive feature of the presence of spontaneous chiral symmetry breaking in QCD is the condensation of low modes of the Dirac operator near the origin. The rate of condensation must be equal to the slope of (Mpi^2 Fpi^2)/2 with respect to the quark mass m in the chiral limit, where Mpi and Fpi are the mass and the decay constant of the Nambu-Goldstone bosons. We compute the spectral density of the (Hermitian) Dirac operator, the quark mass, the pseudoscalar meson mass and decay constant by numerical simulations of lattice QCD with two light degenerate Wilson quarks. We use CLS lattices at three values of the lattice spacing in the range 0.05-0.08 fm, and for several quark masses corresponding to pseudoscalar mesons masses down to 190 MeV. Thanks to this coverage of parameters space, we can extrapolate all quantities to the chiral and continuum limits with confidence. The results show that the low quark modes do condense in the continuum as expected by the Banks-Casher mechanism, and the rate of condensation agrees with the Gell-Mann-Oakes-Renner (GMOR) relation. For the renormalisation-group-invariant ratios we obtain [\Sigma^RGI]^(1/3)/F =2.77(2)(4) and Lambda^MSbar/F = 3.6(2), which correspond to [\Sigma^\MSbar(2 GeV)]^(1/3) =263(3)(4) MeV and F=85.8(7)(20) MeV if FK is used to set the scale by supplementing the theory with a quenched strange quark.Comment: 4 pages, 3 figures, 1 tabl
    corecore