902 research outputs found

    Room temperature lasing at blue wavelengths in gallium nitride microcavities

    Get PDF
    Lasing action has been demonstrated at blue wavelengths in vertical cavity surface-emitting lasers at room temperature. The microcavity was formed by sandwiching indium gallium nitride multiple quantum wells between nitride-based and oxide-based quarter-wave reflectors. Lasing action was observed at a wavelength of 399 nanometers under optical excitation and confirmed by a narrowing of the linewidth in the emission spectra from 0.8 nanometer below threshold to less than 0.1 nanometer (resolution limit) above threshold. The result suggests that practical blue vertical cavity surface-emitting lasers can be realized in gallium-nitride–based material systems

    Shape-independent scaling of excitonic confinement in realistic quantum wires

    Get PDF
    The scaling of exciton binding energy in semiconductor quantum wires is investigated theoretically through a non-variational, fully three-dimensional approach for a wide set of realistic state-of-the-art structures. We find that in the strong confinement limit the same potential-to-kinetic energy ratio holds for quite different wire cross-sections and compositions. As a consequence, a universal (shape- and composition-independent) parameter can be identified that governs the scaling of the binding energy with size. Previous indications that the shape of the wire cross-section may have important effects on exciton binding are discussed in the light of the present results.Comment: To appear in Phys. Rev. Lett. (12 pages + 2 figures in postscript

    Bound states of L-shaped or T-shaped quantum wires in inhomogeneous magnetic fields

    Full text link
    The bound state energies of L-shaped or T-shaped quantum wires in inhomogeous magnetic fields are found to depend strongly on the asymmetric parameter α=W2/W1\alpha =W_{2}/W_{1}, i.e. the ratio of the arm widths. Two effects of magnetic field on bound state energies of the electron are obtained. One is the depletion effect which purges the electron out of the OQD system. The other is to create an effective potential due to quantized Landau levels of the magnetic field. The bound state energies of the electron in L-shaped or T-shaped quantum wires are found to depend quadratically (linearly) on the magnetic field in the weak (strong) field region and are independent of the direction of the magnetic field. A simple model is proposed to explain the behavior of the magnetic dependence of the bound state energy both in weak and strong magnetic field regions.Comment: 4 pages, 4 figure

    Low-temperature specific heat for ferromagnetic and antiferromagnetic orders in CaRu1-xMnxO3

    Full text link
    Low-temperature specific heat of CaRu1-xMnxO3 was measured to clarify the role of d electrons in ferromagnetic and antiferromagnetic orders observed above x=0.2. Specific heat divided by temperature C_p/T is found to roughly follow a T^2 function, and relatively large magnitudes of electronic specific heat coefficient gamma were obtained in wide x range. In particular, gamma is unchanged from the value at x=0 (84 mJ/K^2 mol) in the paramagnetic state for x<=0.1, but linearly reduced with increasing x above x= 0.2. These features of gamma strongly suggest that itinerant d electrons are tightly coupled with the evolution of magnetic orders in small and intermediate Mn concentrations.Comment: 4 pages, 2 figures, to be published in J. Phys.: Conf. Ser. (SCES 2011, Cambridge, UK

    Conceptual Design of a Fast-Ignition Laser Fusion Reactor FALCON-D

    Get PDF
    A new conceptual design of the laser fusion power plant FALCON-D (Fast ignition Advanced Laser fusion reactor CONcept with a Dry wall chamber) has been proposed. The fast ignition method can achieve the sufficient fusion gain for a commercial operation (~100) with about 10 times smaller fusion yield than the conventional central ignition method. FALCON-D makes full use of this property and aims at designing with a compact dry wall chamber (5~6m radius). 1-D/2-D hydrodynamic simulations showed the possibility of the sufficient gain achievement with a 40 MJ target yield. The design feasibility of the compact dry wall chamber and solid breeder blanket system was shown through the thermomecanical analysis of the dry wall and neutronics analysis of the blanket system. A moderate electric output (~400MWe) can be achieved with a high repetition (30Hz) laser. This dry wall concept not only reduces some difficulties accompanied with a liquid wall but also enables a simple cask maintenance method for the replacement of the blanket system, which can shorten the maintenance time. The basic idea of the maintenance method for the final optics system has also been proposed. Some critical R&D issues required for this design are also discussed

    Gain in a quantum wire laser of high uniformity

    Full text link
    A multi-quantum wire laser operating in the 1-D ground state has been achieved in a very high uniformity structure that shows free exciton emission with unprecedented narrow width and low lasing threshold. Under optical pumping the spontaneous emission evolves from a sharp free exciton peak to a red-shifted broad band. The lasing photon energy occurs about 5 meV below the free exciton. The observed shift excludes free excitons in lasing and our results show that Coulomb interactions in the 1-D electron-hole system shift the spontaneous emission and play significant roles in laser gain.Comment: 4 pages, 4 figures, prepared by RevTe

    Tactile Sensors Based on Conductive Polymers

    Get PDF
    This paper presents results from a selection of tactile sensors that have been designed and fabricated. These sensors are based on a common approach that consists in placing a sheet of piezoresistive material on the top of a set of electrodes. We use a thin film of conductive polymer as the piezoresistive mate¬rial. Specifically, a conductive water-based ink of this polymer is deposited by spin coating on a flexible plastic sheet, giving it a smooth, homogeneous and conducting thin film. The main interest in this procedure is that it is cheap and it allows the fabrication of flexible and low cost tactile sensors. In this work we present results from sensors made using two technologies. Firstly, we have used a flexible Printed Circuit Board (PCB) technology to fabricate the set of electrodes and addressing tracks. The result is a simple, flexible tactile sensor. In addition to these sensors on PCB, we have proposed, designed and fabricated sensors with screen printing technology. In this case, the set of electrodes and addressing tracks are made by printing an ink based on silver nanoparticles. The intense characterization provides us insights into the design of these tactile sensors.This work has been partially funded by the spanish government under contract TEC2006-12376-C02

    Excitons in T-shaped quantum wires

    Full text link
    We calculate energies, oscillator strengths for radiative recombination, and two-particle wave functions for the ground state exciton and around 100 excited states in a T-shaped quantum wire. We include the single-particle potential and the Coulomb interaction between the electron and hole on an equal footing, and perform exact diagonalisation of the two-particle problem within a finite basis set. We calculate spectra for all of the experimentally studied cases of T-shaped wires including symmetric and asymmetric GaAs/Alx_{x}Ga1−x_{1-x}As and Iny_{y}Ga1−y_{1-y}As/Alx_{x}Ga1−x_{1-x}As structures. We study in detail the shape of the wave functions to gain insight into the nature of the various states for selected symmetric and asymmetric wires in which laser emission has been experimentally observed. We also calculate the binding energy of the ground state exciton and the confinement energy of the 1D quantum-wire-exciton state with respect to the 2D quantum-well exciton for a wide range of structures, varying the well width and the Al molar fraction xx. We find that the largest binding energy of any wire constructed to date is 16.5 meV. We also notice that in asymmetric structures, the confinement energy is enhanced with respect to the symmetric forms with comparable parameters but the binding energy of the exciton is then lower than in the symmetric structures. For GaAs/Alx_{x}Ga1−x_{1-x}As wires we obtain an upper limit for the binding energy of around 25 meV in a 10 {\AA} wide GaAs/AlAs structure which suggests that other materials must be explored in order to achieve room temperature applications. There are some indications that Iny_{y}Ga1−y_{1-y}As/Alx_{x}Ga1−x_{1-x}As might be a good candidate.Comment: 20 pages, 10 figures, uses RevTeX and psfig, submitted to Physical Review
    • …
    corecore