10 research outputs found

    Fitting the integrated Spectral Energy Distributions of Galaxies

    Full text link
    Fitting the spectral energy distributions (SEDs) of galaxies is an almost universally used technique that has matured significantly in the last decade. Model predictions and fitting procedures have improved significantly over this time, attempting to keep up with the vastly increased volume and quality of available data. We review here the field of SED fitting, describing the modelling of ultraviolet to infrared galaxy SEDs, the creation of multiwavelength data sets, and the methods used to fit model SEDs to observed galaxy data sets. We touch upon the achievements and challenges in the major ingredients of SED fitting, with a special emphasis on describing the interplay between the quality of the available data, the quality of the available models, and the best fitting technique to use in order to obtain a realistic measurement as well as realistic uncertainties. We conclude that SED fitting can be used effectively to derive a range of physical properties of galaxies, such as redshift, stellar masses, star formation rates, dust masses, and metallicities, with care taken not to over-interpret the available data. Yet there still exist many issues such as estimating the age of the oldest stars in a galaxy, finer details ofdust properties and dust-star geometry, and the influences of poorly understood, luminous stellar types and phases. The challenge for the coming years will be to improve both the models and the observational data sets to resolve these uncertainties. The present review will be made available on an interactive, moderated web page (sedfitting.org), where the community can access and change the text. The intention is to expand the text and keep it up to date over the coming years.Comment: 54 pages, 26 figures, Accepted for publication in Astrophysics & Space Scienc

    Physical Processes in Star Formation

    Get PDF
    © 2020 Springer-Verlag. The final publication is available at Springer via https://doi.org/10.1007/s11214-020-00693-8.Star formation is a complex multi-scale phenomenon that is of significant importance for astrophysics in general. Stars and star formation are key pillars in observational astronomy from local star forming regions in the Milky Way up to high-redshift galaxies. From a theoretical perspective, star formation and feedback processes (radiation, winds, and supernovae) play a pivotal role in advancing our understanding of the physical processes at work, both individually and of their interactions. In this review we will give an overview of the main processes that are important for the understanding of star formation. We start with an observationally motivated view on star formation from a global perspective and outline the general paradigm of the life-cycle of molecular clouds, in which star formation is the key process to close the cycle. After that we focus on the thermal and chemical aspects in star forming regions, discuss turbulence and magnetic fields as well as gravitational forces. Finally, we review the most important stellar feedback mechanisms.Peer reviewedFinal Accepted Versio

    The Oral Microbial Consortium's Interaction with the Periodontal Innate Defense System

    No full text
    The oral microbial consortium is the most characterized polymicrobial microbial community associated with the human host. Extensive sampling of both microbial and tissue samples has demonstrated that there is a strong association between the type of microbial community found in the gingival crevice and the status of innate host mediator expression. The strong clinical association between the microbial community and the innate host response in both clinically healthy and diseased tissue suggests that the oral consortium has a direct effect on periodontal tissue expression of innate defense mediators. A preliminary study in germ-free mice has demonstrated that the oral commensal consortium has direct effect on IL-1β expression, indicating that this microbial community may contribute to the strong protective status of healthy gingival tissue. Likewise, the lipopolysaccharide composition and invasion characteristics of Porphyromonas gingivalis, an oral bacterium strongly associated with periodontitis, suggest that it may be a keystone member of the oral microbial community and facilitate a destructive change in the protective gingival innate host status

    Biosynthesis, transport, and modification of lipid A

    No full text
    Lipopolysaccharide (LPS) is the major surface molecule of Gram-negative bacteria and consists of three distinct structural domains: O-antigen, core, and lipid A. The lipid A (endotoxin) domain of LPS is a unique, glucosamine-based phospholipid that serves as the hydrophobic anchor of LPS and is the bioactive component of the molecule that is associated with Gram-negative septic shock. The structural genes encoding the enzymes required for the biosynthesis of Escherchia coli lipid A have been identified and characterized. Lipid A is often viewed as a constitutively synthesized structural molecule. However, determination of the exact chemical structures of lipid A from diverse Gram-negative bacteria shows that the molecule can be further modified in response to environmental stimuli. These modifications have been implicated in virulence of pathogenic Gram-negative bacteria and represent one of the molecular mechanisms of microbial surface remodeling used by bacteria to help evade the innate immune response. The intent of this review is to discuss the enzymatic machinery involved in the biosynthesis of lipid A, transport of the molecule, and finally, those enzymes involved in the modification of its structure in response to environmental stimuli

    Severe Cardiac Disease in Pregnancy

    No full text

    References

    No full text
    corecore