69 research outputs found

    Ambiguity in guideline definitions introduces assessor bias and influences consistency in IUCN Red List status assessments

    Get PDF
    The IUCN Red List is the most widely used tool to measure extinction risk and report biodiversity trends. Accurate and standardized conservation status assessments for the IUCN Red List are limited by a lack of adequate information; and need consistent and unbiased interpretation of that information. Variable interpretation stems from a lack of quantified thresholds in certain areas of the Red List guidelines. Thus, even in situations with sufficient information to make a Red List assessment, inconsistency can occur when experts, especially from different regions, interpret the guidelines differently, thereby undermining the goals and credibility of the process. Assessors make assumptions depending on their level of Red List experience (subconscious bias) and their personal values or agendas (conscious bias). We highlight two major issues where such bias influences assessments: relating to fenced subpopulations that require intensive management; and defining benchmark geographic distributions and thus the inclusion/exclusion of introduced subpopulations. We suggest assessor bias can be reduced by refining the Red List guidelines to include quantified thresholds for when to include fenced/intensively managed subpopulations or subpopulations outside the benchmark distribution; publishing case studies of difficult assessments to enhance cohesion between Specialist Groups; developing an online accreditation course on applying Red List criteria as a prerequisite for assessors; and ensuring that assessments of species subject to trade and utilization are represented by all dissenting views (for example, both utilitarian and preservationist) and reviewed by relevant Specialist Groups. We believe these interventions would ensure consistent, reliable assessments of threatened species between regions and across assessors with divergent views, and will thus improve comparisons between taxa and counteract the use of Red List assessments as a tool to leverage applied agendas.University of Bangor, University of Pretoria, CIB, the Scientific Authority of the South African National Biodiversity Institute

    Assessment of Two Problems of Specific Reaction Parameter Density Functional Theory: Sticking and Diffraction of H-2 on Pt(111)

    Get PDF
    It is important that theory is able to accurately describe dissociative chemisorption reactions on metal surfaces, as such reactions are often rate-controlling in heterogeneously catalyzed processes. Chemically accurate theoretical descriptions have recently been obtained on the basis of the specific reaction parameter (SRP) approach to density functional (DF) theory (DFT), allowing reaction barriers to be obtained with chemical accuracy. However, being semiempirical, this approach suffers from two basic problems. The first is that sticking probabilities (to which SRP density functionals (DFs) are usually fitted) might show differences across experiments, of which the origins are not always clear. The second is that it has proven hard to use experiments on diffractive scattering of H2 from metals for validation purposes, as dynamics calculations using a SRP-DF may yield a rather poor description of the measured data, especially if the potential used contains a van der Waals well. We address the first problem by performing dynamics calculations on three sets of molecular beam experiments on D2 + Pt(111), using four sets of molecular beam parameters to obtain sticking probabilities, and the SRP-DF recently fitted to one set of experiments on D2 + Pt(111). It is possible to reproduce all three sets of experiments with chemical accuracy with the aid of two sets of molecular beam parameters. The theoretical simulations with the four different sets of beam parameters allow one to determine for which range of incidence conditions the experiments should agree well and for which conditions they should show specific differences. This allows one to arrive at conclusions about the quality of the experiments and about problems that might affect the experiments. Our calculations on diffraction of H2 scattering from Pt(111) show both quantitative and qualitative differences with previously measured diffraction probabilities, which were Debye–Waller (DW)-extrapolated to 0 K. We suggest that DW extrapolation, which is appropriate for direct scattering, might fail if the scattering is affected by the presence of a van der Waals well and that theory should attempt to model surface atom motion for reproducing diffraction experiments performed for surface temperatures of 500 K and higher.Theoretical Chemistr

    Chemically accurate simulation of dissociative chemisorption of D2 on Pt(111)

    Get PDF
    Using semi-empirical density functional theory and the quasi-classical trajectory (QCT) method, a specific reaction parameter (SRP) density functional is developed for the dissociation of dihydrogen on Pt(1 1 1). The validity of the QCT method was established by showing that QCT calculations on reaction of D2 with Pt(1 1 1) closely reproduce quantum dynamics results for reaction of D2 in its rovibrational ground state. With the SRP functional, QCT calculations reproduce experimental data on D2 sticking to Pt(1 1 1) at normal and off-normal incidence with chemical accuracy. The dissociation of dihydrogen on Pt(1 1 1) is non-activated, exhibiting a minimum barrier height of −8 meV.Theoretical Chemistr
    corecore