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Using semi-empirical density functional theory and the quasi-classical trajectory (QCT) method, a specific
reaction parameter (SRP) density functional is developed for the dissociation of dihydrogen on Pt(111).
The validity of the QCT method was established by showing that QCT calculations on reaction of D, with
Pt(111) closely reproduce quantum dynamics results for reaction of D, in its rovibrational ground state.
With the SRP functional, QCT calculations reproduce experimental data on D, sticking to Pt(111) at nor-
mal and off-normal incidence with chemical accuracy. The dissociation of dihydrogen on Pt(111) is non-
activated, exhibiting a minimum barrier height of —8 meV.

© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CCBY license (http://
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1. Introduction

The availability of accurate barriers for reactions of molecules
on metal surfaces is of central importance to chemistry. Catalysis
is used to make more than 80% of the chemicals produced world-
wide [1], and the accurate calculation of the rate of a heteroge-
neously catalyzed process requires accurate barriers for the
elementary surface reactions involved [2]. This is especially true
for the rate controlling steps [3,4], which often are dissociative
chemisorption reactions.

Chemistry would thus benefit enormously from the availability
of implementations of first principles methods that would enable
the chemically accurate (i.e., to within 1 kcal/mol) calculation of
barriers for reactions of molecules with metal surfaces. However,
presently such implementations do not yet exist [5]. Also, density
functional theory (DFT) using functionals at the gradient approxi-
mation (GA) or meta-GA level, which can be used to map out
potential energy surfaces (PESs) for molecules interacting with
metals, is not yet capable of predicting reaction barriers for gas
phase reactions with chemical accuracy [6]. This accuracy problem
of DFT is reflected in the limited accuracy with which absolute
rates of heterogeneously catalyzed processes over model catalysts
can now be computed with empirically optimized density func-
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tionals (e.g., 2 orders of magnitude for ammonia production over
Ru catalysts [7]).

Currently, the most viable route to chemically accurate barriers
for molecules with metal surfaces [5] uses implementations [8,9]
of specific reaction parameter DFT (SRP-DFT [10]). In this semi-
empirical version of DFT, usually a single adjustable parameter in
the density functional is fitted to reproduce an experiment that
is particularly sensitive to the reaction barrier height for the speci-
fic system considered. Next, the quality of the functional is tested
by checking that the candidate SRP density functional for the sys-
tem also reproduces other experiments on the same system, which
differ from the experiment the functional was fitted to in a non-
trivial way [8,9]. Using SRP-DFT we have recently started with an
effort to develop a database of chemically accurate barriers for
molecules reacting with metals, which can be used to benchmark
implementations of first principles methods with a claim to chem-
ical accuracy. This database now contains data for H, + Cu(111)
[8], H; + Cu(100) [11], and CH4 + Ni(111) [9].

The goal of the present work is to extend the development of
SRP density functionals, and the database, with a result for a
weakly activated dissociative chemisorption reaction of H, with a
transition metal surface. For this, we have selected the H, + Pt
(111) system. Reasons for selecting this system are that Pt is an
important hydrogenation catalyst [12], and that the interaction
of Hy with Pt(111) and other Pt surfaces has been investigated in
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a number of experimental [13-21] and theoretical [18,22-29]
studies.

Here, we fit an SRP density functional for H, + Pt(111) to disso-
ciative chemisorption probabilities for D, + Pt(111) obtained from
molecular beam measurements performed at normal incidence by
Luntz et al. [15]. The quality of the functional is confirmed by
showing that the functional also allows reaction probabilities to
be reproduced with chemical accuracy for experiments performed
at off-normal incidence [15]. This is a non-trivial result, as the reac-
tion probability for D, + Pt(11 1) does not obey normal energy scal-
ing [15], i.e., it also depends on the component of the incidence
energy parallel to the surface. This dependence arises from a par-
ticular type of correlation between the height of the barriers and
their distance to the surface [23], the lowest barrier being furthest
from the surface [25]. In view of the successes previously achieved
for systems exhibiting a van der Waals well affecting the reactivity
[9,30], we adopt a SRP density functional in which the correlation
functional [31] allows at least a qualitatively accurate description
of the attractive part of the van der Waals interaction. The PBEx
exchange functional [32] was adopted, which allows one not only
to interpolate between the well-known RPBE [33] and PBE [34]
functionals, but also between PBE and a functional approximating
the Wu-Cohen (WC) functional [35], which turned out to be impor-
tant for the present case.

This paper is set up as follows. In Section 2.1 we describe the
dynamical model we used, and in Section 2.2 how the PES for
H, +Pt(111) was obtained. Section 2.3 describes the dynamics
methods employed, and Section 2.4 gives computational details.
Section 3.1 describes the PES obtained with the SRP density func-
tional. Section 3.2 considers the accuracy of the quasi-classical tra-
jectory (QCT) method [36] with the PES employed, and the
accuracy that might be achieved by performing dynamics calcula-
tions only for the rovibrational ground state of D,, rather than per-
forming a complete molecular beam simulation. In Section 3.3 we
discuss how a candidate SRP density functional was derived for
H, + Pt(111) through comparison to normal incidence data. In Sec-
tion 3.4 we confirm the quality of the SRP functional through com-
parison of calculated sticking probabilities with experiments
performed for off-normal incidence. Section 4 presents our conclu-
sions and a brief outlook.

2. Method
2.1. Dynamical model

The calculations use the so-called Born-Oppenheimer static sur-
face (BOSS) model [8]. As discussed in for instance Ref. [29], this
model allows accurate calculations on reactive scattering of H,
from metal surfaces. With the model, the calculation of reaction
probabilities is split in two parts: First, the PES is calculated (Sec-
tion 2.2), and next the PES is used in dynamics calculations (Sec-
tion 2.3). In the PES and the dynamics calculations, only the six
molecular degrees of freedom of the H, molecule are taken into
account. The coordinates to describe the motion of the molecule
are shown in Fig. 1a.

2.2. Calculation of the PES

The ground state PES was calculated using DFT. The exchange-
correlation functional used to compute the PES may be written as

EXC — E§BEx + Eé}dW—DFZ’ (])

i.e.,, we use the PBEa exchange functional [32], with o being the
adjustable parameter, and the van der Waals DF2 functional of Lan-
greth and Lundqvist and coworkers [31]. With the choice o= 1 the

(a)

Fig. 1. (a) The center of mass coordinate system used for the description of the H,
molecule relative to the static Pt(111) surface. (b) The surface unit cell and the sites
considered for the Pt(111) surface, and the relationship with the coordinate system
chosen for H; relative to Pt(111). The origin (X,Y,Z) = (0,0,0) of the center of mass
coordinates is located in the surface plane at a top site. Polar and azimuthal angles 0
and ¢ are chosen such that (0 = 90°, ¢ = 0°) corresponds to molecules parallel to the
surface along the X (or equivalently u) direction.

PBEa functional corresponds [32] to the PBE functional [34], while
for o — oo the PBEa functional corresponds [32] to the RPBE func-
tional [33]. For o = 0.52 a functional is obtained that closely resem-
bles [32] the WC functional that performs well in solid state
calculations [35]. The use of PBEa in semi-empirical applications
would seem to be especially advantageous if interpolation is
required between PBE and a less repulsive exchange functional; if
the goal is to interpolate between PBE and RPBE exchange we sug-
gest using a weighted average of these two [9,37], as using « — co
in PBEa to obtain the RPBE limit is a bit awkward for this purpose.

To obtain a global expression for the PES, the accurate corruga-
tion reducing procedure (CRP) [38] was used to interpolate points
calculated on a grid with DFT. The procedure used is exactly the
same as used in Ref. [29]. The p3m1 plane group symmetry [39]
associated with the Pt(111) surface was used.

2.3. Dynamics calculations of reaction probabilities

Reaction probabilities were calculated for the (v =0, j = 0) state
of D, with the time-dependent wave packet (TDWP) method [40]
in an implementation for dihydrogen scattering from surfaces with
hexagonal symmetry that is fully described in Ref. [25]. Dissocia-
tion probabilities of D, colliding with Pt(111) for comparison with
molecular beam experiments on the same system [15] were calcu-
lated with the QCT method [36] in an implementation described in
Ref. [29]. Earlier calculations predicted that even for the lighter H,
molecule the QCT method yields dissociative chemisorption prob-
abilities for hydrogen dissociation on Pt(11 1) that are in excellent
agreement with quantum dynamics results [24]. For the best com-
parison with experiments, the calculations include Monte-Carlo
averaging over the velocity distributions of the hydrogen beams,
and Boltzmann averaging over the rovibrational states of
hydrogen, as fully described in Ref. [29]. An important assumption
made in our calculations is that the molecular beams used in the
experiments of Luntz et al. [15] are quite similar to hydrogen
beams produced in experiments of Juurlink and co-workers [41],
and we used the beam parameters presented in table 3 of Ref.
[30] to simulate D, beams in our work on the basis of this
assumption.
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2.4. Computational details

The DFT calculations were performed with the VASP (version
5.2.12) programme [42-44]. Standard projector augmented wave
(PAW) potentials [45] were used. First, the bulk fcc lattice constant
was determined in the same manner as used previously for H, + Au
(111)[46], using a 20 x 20 x 20 I'-centered grid of k-points. With
the optimized SRP density functional (using o = 0.57, see Section 3)
a lattice constant of 4.015 A was obtained, in reasonable agreement
with the experimental value of 3.91 A. Next, a relaxed 5-layer slab
was obtained, again in the same manner as used before for H, + Au
(111) [46], using a 20 x 20 x 1 I'-centered grid of k-points. After
having obtained the relaxed slab, single point calculations were
carried out on Hy +Pt(111), using a 9 x 9 x 1 I'-centered grid of
k-points, and a plane wave cut-off of 400eV, in a super cell
approach in which 13 A of vacuum length was used for the spacing
between the Pt(111) slabs. The grid of the points for which the
H, + Pt(111) calculations were done, and other details of the calcu-
lations, were taken the same as in Ref. [29]. The CRP PES was
extrapolated to the gas-phase potential of H, in the same way as
used in Ref. [29].

In the QCT calculation of dissociative chemisorption probabili-
ties for comparison with molecular beam experiments, 10,000 tra-
jectories were run for each (v,j) state with the vibrational quantum
number v < 3 and the rotational quantum number j < 20. For each
Jj, uniform sampling was performed of the magnetic rotational
quantum number m;. The centre-of-mass of H, was originally
placed at Z=9 A, with the velocity directed towards the surface
and sampled from appropriate velocity distributions for D, beams
(see Table 3 of Ref. [30]). The molecule is considered dissociated
once r>2.25 A, and considered scattered once Z > 9 A. Other com-
putational details of the QCT calculations are the same as in Ref.
[29]. The surface lattice constant (i.e., the nearest neighbor Pt-Pt
distance) used in the QCT calculations (and in the TDWP calcula-
tions) was taken as the computed Pt lattice constant divided by

V2 (i.e., as 2.84 A).

In the TDWP calculations on (v =0, j=0) D, + Pt(111), two sep-
arate wave packet calculations were performed to cover the colli-
sion energy range E;=0.05-0.55eV. This procedure avoids
problems that may arise from the interaction of the low energy
components of the wave packet with optical potentials if only
one broad wave packet is used to cover a very large translational
energy range. The input parameters we used in the TDWP calcula-
tions are listed in Table S1. Convergence tests carried out suggest
that, with the use of these parameters, the reaction probabilities
computed for (v=0, j=0) D, are converged to within better than
2% of their values (i.e., relative errors <2%).

3. Results and discussion
3.1. Potential energy surface

Two-dimensional cuts (so-called elbow plots) through the PES
used in the dynamics calculations on H, + Pt(111) are shown in
Fig. 2, in all cases for H, oriented parallel to the surface. With the
optimized SRP density functional (using o= 0.57, see Section 3.3),
the dissociation is non-activated in the sense that the transition
state has an energy that is 8 meV below the gas phase minimum
energy of H, (the early barrier for dissociation above the top site,
see also Table 1, which lists the geometries and barrier heights cor-
responding to the results shown in Fig. 2). With the functional
used, the barrier height (E,) shows a larger energetic corrugation
(i.e., a greater variation with impact site) than previously obtained
with the Becke-Perdew functional (Ref. [25] and references
therein). This is what should be expected for a functional accu-
rately describing the experiments on dissociative chemisorption
of D, on Pt(111) [15], as the previously computed sticking proba-
bility vs. incident translational energy curve was too steep [18,25].
Note that previous experience with Hp-metal systems suggests
that the use of Lundqvist-Langreth van der Waals correlation func-
tionals, as employed here, yield PESs with larger energetic corruga-
tion than ordinary GGA correlation functionals [29,30].

06 08 1 12 14 16 1.8

206 08 1 12 14 16 18 2

r(A)

Fig. 2. Elbow plots (i.e. V(Z,)) resulting from the H, + Pt(111) PES computed with the PBEa-vdW-DF2 functional with o = 0.57, and interpolated with the CRP method for four
high symmetry configurations with the molecular axis parallel to the surface (6 = 90°), for the top site and ¢ = 0°, the bridge site and ¢ = 0° (bridge-to-top), the hcp site and ¢
=30°, and the t2 h site and ¢ = 120° (see also Fig. 1). Barrier geometries are indicated with red crosses, and the corresponding barrier heights are given in Table 1. The spacing
between contour lines is 0.05 eV. The thick dark black line defines the gas phase minimum energy of H, as the zero of energy. Solid lines correspond to positive, dotted lines to

negative energies.
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Table 1

Barrier heights (E,), the distance to the surface of the barrier (Z,), and the H-H distance at the barrier (r},, in A) are given for four different dissociation geometries defined by the
impact site and the angle ¢ (see Fig. 1), for dissociation of H, over Pt(111) with H, parallel to the surface (6 = 90°). The results have been obtained with the PBEo-vdW-DF2
functional with oo = 0.57. For the top site, results are given for two barrier geometries. The E, values in brackets correspond to the 6D PES computed with the Becke-Perdew

functional (see Ref. [25]).

Site ¢ (degrees) Ep (eV) 1y (A) Zy (A)
Top, early 0 ~0.008 (0.06) 0.769 2.202
Top, late 0 —0.055 1.096 1.549
Bridge 0 0.275 (0.27) 0.837 1.777
hep 30 0.462 (0.42) 0.874 1.586
t2h 120 0.200 (0.20) 0.837 1.679
i i i — 7T T T
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Fig. 3. The potential for H, + Pt(11 1) is shown as a function of the molecule-surface CGEJ - (b) A
distance, for r=r, after averaging over the four remaining molecular degrees of 0 . ] . ] . 1 . 1 .
freedom. The results are for the PES computed with the PBEa-vdW-DF2 functional 0 10 20 30 40 50

with o =0.57.

Fig. 3 shows a plot of the potential at r = r,, after averaging over
X, Y, 6, and ¢, with r. being the minimum H-H distance of gas-
phase H,. This averaged potential curve shows a van der Waals
minimum well depth of 72 meV, in excellent agreement with the
range of values found in experiments (i.e.,, 55 meV [14,18], and
76 meV [47]). Getting the van der Waals attractive interaction right
may be important to obtaining a correct value for the energy of the
“early” transition state (which occurs at Z=2.2 A, see Table 1) and
is probably also important to the calculation of probabilities for
diffractive scattering, for which detailed experimental results are
available [18].

3.2. Quantum vs. quasi-classical dynamics, and the importance of
simulating the molecular beam

Fig. 4a shows a comparison of reaction probabilities computed
for D, in its initial (v = 0, j = 0) state for specific incidence energies
with quantum dynamics and with quasi-classical dynamics. The
calculations used the optimized SRP density functional (i.e., with
o =0.57, see Section 3.3). Even in the absence of averaging over ini-
tial rovibrational states and over the distribution of energies, as
would be appropriate for comparisons with molecular beam exper-
iments, the quantum and QCT results are in excellent agreement
with one another. In the following, we will therefore use the QCT
method to compute sticking probabilities for comparison to the
molecular beam experiments of Luntz et al. [15] (see Fig. 5).

Fig. 4b shows a comparison of reaction probabilities computed
with the QCT method for D, in its initial (v=0, j=0) state for
specific incidence energies with QCT results obtained with full
averaging over the rovibrational state populations and velocity

Collision energy (kJ/mol)

Fig. 4. (a) Dissociation probabilities computed for (v=0, j=0) D, +Pt(111) with
quantum dynamics and with the QCT method are shown as a function of the
collision energy, for normal incidence. The results are compared with sticking
probabilities measured for D, +Pt(111) [15] and shown as a function of average
incidence energy. (b) Dissociation probabilities computed for (v=0, j=0) D, + Pt
(111) with the QCT method for specific collision energies are compared with
sticking probabilities computed for D, +Pt(111) with full averaging over the
rovibrational state populations and velocity distributions of typical molecular
beams of pure D,.

distributions that are typical for molecular beam experiments
using pure D, beams [30,41]. The comparison of Fig. 4b suggests
that it should not really be necessary to take the effect of the veloc-
ity distribution and the rovibrational state distribution into
account, in broad agreement with an earlier theoretical study of
H, +Pt(111) [27]. This is in sharp contrast with findings for the
highly activated H, + Cu(11 1) reaction [8,48]; for this system, tak-
ing into account the velocity distribution is necessary for accurate
results, because the reactivity may come entirely from incidence
energies above the average incidence energy of the beam, and
above the high reaction threshold. Even though taking into account
the beam conditions should be much less important for D, + Pt
(111), in the following we will always represent computational
results with full averaging over the incidence energy and
rovibrational state population of the D, beams, to obtain the best
possible comparison with the molecular beam experiments of
Luntz et al. [15].

3.3. Fit of the SRP density functional to molecular beam data for
normal incidence

Before the SRP functional for H, + Pt(11 1) could be fit, a choice
had to be made concerning which experimental dataset for normal
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incidence theoretical results should be compared with. In the liter-
ature, two sets of molecular beam data are available for dihydro-
gen normally incident on Pt(111), i.e., those of Luntz et al. [15]
and those of Samson et al. [16]. The work of Luntz et al. focused
on the dihydrogen + Pt(111) system, looking at the effects of the
angle of incidence 0;, surface temperature Ty, isotopic mass, and
nozzle temperature T, in great detail, and producing data for
D, +Pt(111) at T;=300K for a large range of incidence energies
E; by also using seeding of D, in H; to achieve high E;. In contrast,
Samson et al. only published data for D, + Pt(11 1) for normal inci-
dence, for one value of T; (150 K), for the more limited range of E;
available with pure D, beams only, in a paper focused on how
alloying varying amounts of Sn into the surface affects the sticking.
Furthermore, Luntz et al. explicitly stated that their “incidence
energies” (labeled E; in their work) were energy averaged over
the TOF distribution of the beams they used, whereas Samson
et al. simply assumed that the average incidence energy (which
we will label as (E;)) is given by (E;) = 2.75kT,. For these reasons,
we have chosen to fit our SRP functional to the normal incidence
data of Luntz et al., assuming that these would represent the most
accurate dataset.

The assumption that the dataset of Luntz et al. is best for bench-
marking purposes is important. Although Samson et al. stated that
their D, + Pt(11 1) data closely reproduce the prior results of Luntz
et al., plotting the datasets together reveals that the data of Samson
et al. are displaced along the energy axis by 1-1.5 kcal/mol relative
to the Luntz et al. data, towards higher energies (not shown). The
data of Samson et al. therefore suggest a somewhat less reactive
surface. If our assumption is incorrect, or if our interpretation of
the meaning of (E;) in the experiments of Luntz et al. would be
incorrect (we obtain the average by averaging incidence energy
over the flux weighted velocity distribution given by Eq. (3) in
the Supporting Information to Ref. [8]) this should be reflected in
the accuracy of the extracted SRP functional and minimum barrier
height. Problems with the interpretation of results of molecular
beam experiments due to lacking or incomplete specification of
the velocity distributions have hampered efforts to obtain accurate
SRP functionals and benchmark data before [49]. However, the
problem noted here for Hy +Pt(111) is not as severe as for
H, +Pd(111) [49].

0.8 —_— —_———
eo—e theory L0
- o exp o 1.72
r 0.92 1
D, + Pt(111)
2> 061 0.88 T
E
2 L ]
Q
[
Q 04 E
c
ie]
“6 L i
©
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T o2} i
g 0.84
- E.. -
0 " 1 " 1 " 1 " 1 " 1 "
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average collision energy (kJ/mol)

Fig. 5. Reaction probabilities computed for D, +Pt(111) with the SRP density
functional (see text) are shown as a function of (E;), comparing to the molecular
beam results of Luntz et al. [15]. The results are for normal incidence. The arrows
and accompanying numbers show the collision energy spacing (in kj/mol,
1 kcal/mol ~ 4.2 kJ/mol) between the computed sticking probabilities and the
interpolated experimental sticking probability data (green circles). (For interpre-
tation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)

To obtain an SRP functional, first tests were performed combin-
ing the PBE functional for exchange [34] with the Lundqvist-
Langreth functional of Dion et al. (vdW-DF1) [50]. With this func-
tional, the van der Waals well was too deep compared with exper-
imental results, and the computed reaction probabilities were
shifted to too high energies and did not exhibit chemical accuracy
(results not shown). For these reasons, we switched to the
improved Lundqvist-Langreth functional of Lee et al. (vdW-DF2)
[31], and to the PBE« functional [32], adjusting o by trial and error
to obtain agreement with the sticking experiments of Luntz et al.
[15]. By choosing o =0.57, agreement with the experiments for
normal incidence could be obtained to within chemical accuracy,
by which we mean that the computed sticking probabilities are
displaced along the energy axis from the interpolated experimental
curve by no more than 1 kcal/mol (see Fig. 5). The resulting SRP-
DFT PES shows a minimum barrier height of —8 meV (~1 kJ/mol),
suggesting the reaction to be non-activated if the molecule hits
the surface at the right site (the top site, see Table 1). The “acti-
vated appearance” of the reaction probability curve comes from
the molecule also hitting the surface at other impact sites and ori-
entations for which higher barriers are encountered (see for
instance Table 1 and Fig. 2), as already suggested by Luntz et al.
at the time of their work [15].

3.4. Confirming the quality of the SRP density functional by
comparison to molecular beam data for off-normal incidence

Strictly speaking, the functional obtained in Section 3.4 is, at
this stage, only a “candidate SRP functional”: to become an SRP
functional, dynamics calculations with the functional should also
be able to reproduce other experiments on the same system, which
differ from the experiments the functional was fit to in a non-
trivial way [8,9]. For this, we chose to use the datasets obtained
by Luntz et al. for off-normal incidence [15]. For H, + Pt(111) more
recent, detailed data on molecular diffraction are also available
[18], but recent work on H, + Ru(0001) suggests that accurately
reproducing diffraction data is fraught with difficulties [30]. This
is most likely related to the need to extrapolate the experimental
data to a low temperature or even static surface regime using
Debye-Waller attenuation, or to simulate the effect of surface tem-
perature in accurate quantum dynamics calculations [30].

Reaction probabilities computed for ;=30 and 45° agree with
the experimental values to within chemical accuracy (Fig. 6). Lar-
ger displacements than 1 kcal/mol of the computed reaction prob-
abilities from the interpolated experimental sticking curve are
observed for 6; = 60°, but we argue that for this large an incidence
angle our operational definition of chemical accuracy may not be
appropriate. The slope of the measured sticking curve as a function
of total incidence energy is small, so that a small error in the mea-
sured reaction probability could have a large effect of the energy
displacement of the computed reaction probability to the interpo-
lated experimental curve. In this context, we note that error bars
on the measured sticking probabilities were lacking [15]. In view
of the positive results for 0;=30 and 45°, we argue that our
PBEa-vdW-DF2 functional is an SRP functional for H, + Pt(111),
and that the minimum barrier data (and the barriers obtained for
other impact sites shown in Table 1) can be used for benchmark
purposes, i.e., they can be included in an emerging database with
chemically accurate barriers for molecules interacting with transi-
tion metals [5].

Luntz et al. did not specify the incidence plane used in their
experiments on off-normal incidence [15]. The computed data
shown in Fig. 6 are for incidence along the (11 —2) direction,
which corresponds to the vector bisecting the u and v vectors in
Fig. 1. However, for incidence along the (1 0 —1) direction (corre-
sponding to the direction of u in Fig. 1), the computed sticking
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Fig. 6. Reaction probabilities computed for D, +Pt(111) with the SRP density
functional (see text) are shown as a function of (E;), comparing to the molecular
beam results of Luntz et al. [15]. The results are for off-normal incidence at the
indicated incidence angles 0; of 30, 45 and 60°, along the (11 -2) incidence
direction. The arrows and accompanying numbers show the collision energy
spacing (in kJ/mol, 1 kcal/mol ~ 4.2 k]J/mol) between the computed sticking prob-
abilities and the interpolated experimental sticking probability data (green circles).
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

probabilities closely reproduce the values computed for the
(11 -2) direction, and they likewise reproduce the experimental
data, for 0;=30 and 45° (not shown). For 0;=60° and incidence
along the (10 —1) direction, the computed sticking probabilities
do not quite reproduce the values computed for the (1 1 —2) direc-
tion (in agreement with earlier theoretical work on H, + Pt(111)
[25]), but the result that for this incidence direction and large angle
the computed data do not reproduce the experiments with chem-
ical accuracy is also obtained for the (1 0 —1) direction.

4. Conclusions and outlook

We have obtained an SRP density functional for H, + Pt(111) by
adjusting the o parameter in the PBEoi-vdW-DF2 functional until
reaction probabilities computed with the QCT method reproduced
sticking probabilities measured for normally incident D, with
chemical accuracy. In the QCT calculations, the rovibrational state
populations and the velocity distributions of the incident beams
were taken into account. Also, the appropriateness of the use of
the QCT method for the purpose of accurately calculating reaction
probabilities for D, + Pt(111) was established by a comparison
with quantum dynamics calculations for the initial (v=0, j=0)
state of D,. The quality of the SRP functional was confirmed by
showing that QCT calculations using the functional also repro-
duced data for off-normal incidence for 0; =30 and 45°, for which
the computed reaction probabilities show no dependence on the
plane of incidence. The minimum barrier height obtained for the
reaction is —8 meV, in agreement with the experimental observa-
tion of no, or only a small energetic threshold to reaction [15]. This
value can be entered into a small [5], but growing [9] database
with barriers of reactions of molecules with metal surfaces, for
which chemical accuracy is claimed.

Our conclusion depends on the assumption that the data of
Luntz et al. are accurate and the validity of our interpretation of
the average incidence energy in their experiments [15] (see Sec-
tion 3.3). To confirm this, accurate new experiments on reaction
of H, or D, with Pt(111) for varying incidence angles and
well-defined molecular beam velocity distributions and incidence
plane would be welcomed. Such experiments might also be able
to confirm or falsify our prediction [25] that significantly different

reaction probabilities should be obtained for different incidence
planes and large incidence angles 0;.

Future computational work could address the question of how
the dynamical model may have to be extended to accurately repro-
duce the detailed molecular diffraction data available for H, + Pt
(111) [18]. Once such a model is available it could be used in
further tests of the SRP density functional for H, + Pt(111) by com-
parison to these data, and in tests of the candidate SRP density
functional for H, + Ru(0001), for which detailed diffraction data
are also available [30]. We also suggest that the SRP functional
be used to model data on the reaction of H, with stepped Pt
surfaces [20,21], to check whether SRP functionals developed for
a low index transition metal surface exhibit transferability to
systems in which the same molecule interacts with a vicinal or
stepped surface of that metal.
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