69 research outputs found
Persönlichkeit und Entspannung vs. Ablenkung beim Zahnarzt
Die vorliegende Studie untersuchte den Einfluß von hoch und niedrig ausgeprägter Zahnbehandlungsangst und den Einfluß der Intervention durch ein Entspannungs- und Ablenkungsverfahren (und Kontrolle) bei der Antizipation einer Zahnbehandlung. Die Teilnehmer waren 49 Patienten einer Giessener Zahnarztpraxis, die parallelisiert nach Alter und Geschlecht auf die Bedingungen aufgeteilt wurden. Anders als in anderen Studien wurden die verschiedenen Meßaspekte in umfassender Weise betrachtet: es wurden peripher-physiologische, immunologische, subjektiv-verbale und behaviorale Indikatoren herangezogen. Außerdem wurde der Einfluß der Ausprägung der Zahnbehandlungsangst und der Art der Experimentalbedingung auf das aktuelle Coping-verhalten untersucht.
Es zeigte sich, dass peripher-physiologische und immunologische Indikatoren nicht von der Ausprägung der Zahnbehandlungsangst beeinflußt waren. Allerdings zeigten sich subjektiv-verbale Unterschiede: Hochängstliche schätzten ihre körperliche Erregung höher ein als Niedrigängstliche, was auf eine Tendenz der Hochängstlichen zurückgeführt wurde, körperliche Reaktionen stärker als Niedrigängstliche zu beachten. Weiterhin zeigten sich behaviorale Unterschiede: Hochängstliche wirkten starrer und wurden als ängstlicher, weniger entspannt und weniger kooperativ eingeschätzt. Allerdings hat sich das aktuelle Copingverhalten von Hoch- und Niedrigängstlichen nicht unterschieden.
Die Ergebnisse sprechen jedoch für eine Wirksamkeit des Entspannungsverfahrens, vor allem bei Hochängstlichen. Zwar haben sich die Experimentalgruppen, wie auch die Persönlichkeitsgruppen, nicht in peripher-physiologischen und immunologischen Indikatoren unterschieden, allerdings verbesserte das Entspannungsverfahren die subjektive Befindlichkeit besonders bei den Hochängstlichen. Auch behaviorale Unterschiede weisen auf die Wirksamkeit des Entspannungsverfahrens hin, dass sich von der Wirkung des Ablenkungsverfahrens und der Kontrollbedingung unterscheidet.
Die Ergebnisse zur Wirksamkeit des Ablenkungsverfahrens sind weniger eindeutig. Das Ablenkungsverfahren unterscheidet sich in einigen Punkten vom Entspannungsverfahren, allerdings kaum von der Kontrollbedingung. Dies wird der verwendeten Technik (Audio-Präsentation) angelastet, die vergleichsweise wenig Ablenkungskraft hat. Allerdings beeinflußte das Ablenkungsverfahren das aktuelle Copingverhalten während der Zahnbehandlung
The venom and telopodal defence systems of the centipede Lithobius forficatus are functionally convergent serial homologues
Abstract
Background
Evolution of novelty is a central theme in evolutionary biology, yet studying the origins of traits with an apparently discontinuous origin remains a major challenge. Venom systems are a well-suited model for the study of this phenomenon because they capture several aspects of novelty across multiple levels of biological complexity. However, while there is some knowledge on the evolution of individual toxins, not much is known about the evolution of venom systems as a whole. One way of shedding light on the evolution of new traits is to investigate less specialised serial homologues, i.e. repeated traits in an organism that share a developmental origin. This approach can be particularly informative in animals with repetitive body segments, such as centipedes.
Results
Here, we investigate morphological and biochemical aspects of the defensive telopodal glandular organs borne on the posterior legs of venomous stone centipedes (Lithobiomorpha), using a multimethod approach, including behavioural observations, comparative morphology, proteomics, comparative transcriptomics and molecular phylogenetics. We show that the anterior venom system and posterior telopodal defence system are functionally convergent serial homologues, where one (telopodal defence) represents a model for the putative early evolutionary state of the other (venom). Venom glands and telopodal glandular organs appear to have evolved from the same type of epidermal gland (four-cell recto-canal type) and while the telopodal defensive secretion shares a great degree of compositional overlap with centipede venoms in general, these similarities arose predominantly through convergent recruitment of distantly related toxin-like components. Both systems are composed of elements predisposed to functional innovation across levels of biological complexity that range from proteins to glands, demonstrating clear parallels between molecular and morphological traits in the properties that facilitate the evolution of novelty.
Conclusions
The evolution of the lithobiomorph telopodal defence system provides indirect empirical support for the plausibility of the hypothesised evolutionary origin of the centipede venom system, which occurred through functional innovation and gradual specialisation of existing epidermal glands. Our results thus exemplify how continuous transformation and functional innovation can drive the apparent discontinuous emergence of novelties on higher levels of biological complexity.Copyright © The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. The attached file is the published version of the article.NHM Repositor
Modern venomics--Current insights, novel methods, and future perspectives in biological and applied animal venom research
Venoms have evolved >100 times in all major animal groups, and their components, known as toxins, have been fine-tuned over millions of years into highly effective biochemical weapons. There are many outstanding questions on the evolution of toxin arsenals, such as how venom genes originate, how venom contributes to the fitness of venomous species, and which modifications at the genomic, transcriptomic, and protein level drive their evolution. These questions have received particularly little attention outside of snakes, cone snails, spiders, and scorpions. Venom compounds have further become a source of inspiration for translational research using their diverse bioactivities for various applications. We highlight here recent advances and new strategies in modern venomics and discuss how recent technological innovations and multi-omic methods dramatically improve research on venomous animals. The study of genomes and their modifications through CRISPR and knockdown technologies will increase our understanding of how toxins evolve and which functions they have in the different ontogenetic stages during the development of venomous animals. Mass spectrometry imaging combined with spatial transcriptomics, in situ hybridization techniques, and modern computer tomography gives us further insights into the spatial distribution of toxins in the venom system and the function of the venom apparatus. All these evolutionary and biological insights contribute to more efficiently identify venom compounds, which can then be synthesized or produced in adapted expression systems to test their bioactivity. Finally, we critically discuss recent agrochemical, pharmaceutical, therapeutic, and diagnostic (so-called translational) aspects of venoms from which humans benefit.This work is funded by the European Cooperation in Science and Technology (COST, www.cost.eu) and based upon work from the COST Action CA19144 – European Venom Network (EUVEN, see https://euven-network.eu/). This review is an outcome of EUVEN Working Group 2 (“Best practices and innovative tools in venomics”) led by B.M.v.R. As coordinator of the group Animal Venomics until end 2021 at the Institute for Insectbiotechnology, JLU Giessen, B.M.v.R. acknowledges the Centre for Translational Biodiversity Genomics (LOEWE-TBG) in the programme “LOEWE – Landes-Offensive zur Entwicklung Wissenschaftlich-ökonomischer Exzellenz” of Hesse's Ministry of Higher Education, Research, and the Arts. B.M.v.R. and I.K. further acknowledge funding on venom research by the German Science Foundation to B.M.v.R. (DFG RE3454/6-1). A.C., A.V., and G.Z. were supported by the European Union's Horizon 2020 Research and Innovation program through Marie Sklodowska-Curie Individual Fellowships (grant agreements No. A.C.: 896849, A.V.: 841576, and G.Z.: 845674). M.P.I. is supported by the TALENTO Program by the Regional Madrid Government (2018-T1/BIO-11262). T.H.'s venom research is funded by the DFG projects 271522021 and 413120531. L.E. was supported by grant No. 7017-00288 from the Danish Council for Independent Research (Technology and Production Sciences). N.I. acknowledges funding on venom research by the Research Fund of Nevsehir Haci Bektas Veli University (project Nos. ABAP20F28, BAP18F26). M.I.K. and A.P. acknowledge support from GSRT National Research Infrastructure structural funding project INSPIRED (MIS 5002550). G.A. acknowledges support from the Slovenian Research Agency grants P1-0391, J4-8225, and J4-2547. G.G. acknowledges support from the Institute for Medical Research and Occupational Health, Zagreb, Croatia. E.A.B.U. is supported by a Norwegian Research Council FRIPRO-YRT Fellowship No. 287462
Comparative studies on the nervous system of the Chilopoda with emphasis on the organization of deutocerebral neuropils, sensory structures and olfactory behavior
Im Gegensatz zu den Hexapoda und Crustacea (Tetraconata) liegen nur wenige Daten zur Architektur des Nervensystems der Chilopoda vor. Ein besonderer Fokus in neuroanatomischen Studien der Arthropoda liegt auf der internen Organisation des Deutocerebrum. Das Deutocerebrum ist ein primärer Verschaltungsort antennaler Sinnesmodalitäten. Es wurde von Schachtner et al. (2005) gezeigt, dass bei Vertretern der Hexapoda und Crustacea spezifische Synapomorphien in Bezug auf die olfaktorischen Glomeruli festzustellen sind. Durch den Einsatz verschiedenster histologischer Techniken, immunhistochemischer sowie histochemischer Methoden, anterograder Backfill-Anfärbungen und der dreidimensionalen Rekonstruktion wurde das Deutocerebrum der Chilopoda in dieser Dissertation untersucht um zu verifizieren, ob das Deutocerebrum ähnlich zu dem der Tetraconata ausgeprägt und ob diese innerhalb der Mandibulata homologisierbar sind. Zudem wurden die gewonnen Daten mit neuroanatomischen Studien zu den Chelicerata verglichen. Das Deutocerebrum der Chilopoda ist durch mehrere Merkmale charakterisiert: (1) Innervierung durch antennale sensorische Neuriten, (2) ein anterior gelegener olfaktorischer Lobus, (3) der posterior gelegene Corpus lamellosum, (4) afferente Projektionen aus der Antenne die in das Unterschlundganglion projizieren sowie (5) Projektionstrakte zwischen dem Protocerebrum und dem olfaktorischen Lobus. Neuroanatomische Daten zeigen, dass ein Schwestergruppenverhältnis zwischen Myriapoda und Chelicerata höchst unwahrscheinlich ist, da das durch sensorische Anhänge innervierte Neuromer bei den Chelicerata nicht durch ein mechanosensorisches Neuropil charakterisiert ist. Basierend auf den Befunden der untersuchten Chilopoda ergibt sich als Apomorphie der Mandibulata, dass der sensorische Eingang durch die homologe deutocerebrale Antenne zwei distinkte Neuropilbereiche innerviert. Sensorische Informationen werden hauptsächlich von antennalen Sensillen wahrgenommen. Mit Ausnahme der Scutigeromorpha, lagen für alle höheren Taxa der Chilopoda Daten zur Struktur und Diversität antennaler Sensillen vor. In der vorliegenden Arbeit konnte diese Lücke geschlossen werden und ein Vergleich der antennalen Sensillen innerhalb der Chilopoda durchgeführt werden. Innerhalb der Chilopoda lassen sich für die Scutigeromorpha drei einzigartige antennale Strukturen feststellen: (1) der Besitz von langen Antennen mit Noden, die „sensory cones“ tragen, (2) der Besitz eines zweigliedrigen Schaftes, der das Schaftorgan trägt und (3) der Besitz des Beak-like Sensillums. Ein dritter Aspekt dieser Arbeit behandelt verhaltensbiologische Untersuchungen bei Vertretern der Chilopoda. Zusammenfassend zeigen die durchgeführten Experimente, dass die Chilopoda (im Speziellen Scutigera coleoptrata) Sinnesreize über die Antenne wahrnehmen kann, spezifische neuronale Strukturen für die Verarbeitung besitzen und auf olfaktorische Reize reagieren.Contrary to hexapods and crustaceans (Tetraconata), only few data on the architecture of the nervous system of chilopods are present. A focus in neuroanatomical studies of arthropods is the deutocerebrum which is a primary processing area of sensory input from the first antennae. Schachter et al. (2005) compiled several synapomorphic characters of the olfactory glomeruli of hexapods and crustaceans. To test whether the architecture of the deutocerebrum of chilopods is homologue to that of the Tetraconata, different techniques such as histology, immunhistochemistry and histochemistry, anterograde backfills and threedimensional reconstructions were conducted. Furthermore, the achieved neuroanatomical data were compared to available studies on the nervous systems of chelicerates. The deutocerebrum in Chilopoda is characterized by several features: (1) innervation by antennal sensory neurites, (2) an anterior olfactory lobe, (3) a posterior Corpus lamellosum, (4) afferent neurite projections into the subesophageal ganglion and (5) projection tracts between protocerebral neuropils and the olfactory lobe. Neuroanatomical data show that a sistergroup relationship between Myriapoda and Chilopoda is highly unlikely because in the Chelicerata the innervated neuromere is not equipped with a mechanosensory neuropil. In summary, in the Mandibulata the sensoric neurites innervate two distinct neuropilar regions. This feature is postulated as an apomorphic character. The majority of sensory information in Chilopoda is perceived by antennal sensilla. With exception of the Scutigeromorpha, for all other higher taxa of the Chilopoda information on the external structure and distribution of antennal sensilla is available. Within the Chilopoda, three unique characters were found for the Scutigeromorpha: (1) the presence of long antennae with nodes bearing sensory cones, (2) the presence of a bipartite shaft including the shaft organ, and (3) the presence of beak-like sensilla. A third aspect of this dissertation deals with ethological investigations of representatives of the Chilopoda. To sum up, ethological experiments show that chilopods (and especially Scutigera coleoptrata) can perceive olfactory stimuli via the antennae, possess distinct nervous system structures to process these information, and are able to react to olfactory stimuli
Myriapoda
Abstract
Myriapoda, comprising Chilopoda, Diplopoda, Symphyla, and Pauropoda, are multi-legged obligate terrestrial arthropods. Although they have a worldwide distribution and can occur in large quantities, many aspects of their biology including, e.g. morphology, physiology, and behaviour, are understudied. Moreover, in comparison with hexapods and crustaceans, little is known about the architecture and organization of the nervous system or neurogenesis in myriapods. The present review provides a brief overview on historical investigations in neuroanatomy, introduces the general layout of the myriapod nervous system, and introduces relevant brain components that are described in comparison to other arthropods using a contemporary, unified, neuroanatomical nomenclature. In general, the most prominent part of the nervous system, the brain, is a syncerebrum, which is composed of the three neuromeres, proto-, deuto-, and tritocerebrum. The protocerebrum features major neuropils such as, e.g. the mushroom bodies, two optic neuropils, and a central body, whereas olfactory and mechanosensory neuropils are, most prominently, located within the deutocerebrum. The tritocerebrum innervates the preoral head region and connects to the suboesophageal ganglion and ventral nerve cord. Morphological characteristics of certain neuropils are so far best investigated in representatives of Chilopoda, although often restricted to individual species. The chapter discusses evolutionary aspects of the brain architecture in myriapods in comparison to that of other Mandibulata.</jats:p
Immunolocalization of histamine in the optic neuropils of Scutigera coleoptrata (Myriapoda: Chilopoda) reveals the basal organization of visual systems in Mandibulata
Structure and distribution of antennal sensilla in Oranmorpha guerinii (Gervais, 1837) (Diplopoda, Polydesmida)
Serotonergic neurons in the ventral nerve cord of Chilopoda – a mandibulate pattern of individually identifiable neurons
Abstract Background Given the numerous hypotheses concerning arthropod phylogeny, independent data are needed to supplement knowledge based on traditional external morphology and modern molecular sequence information. One promising approach involves comparisons of the structure and development of the nervous system. Along these lines, the morphology of serotonin-immunoreactive neurons in the ventral nerve cord has been investigated in numerous tetraconate taxa (Crustacea and Hexapoda). It has been shown that these neurons can be identified individually due to their comparably low number, characteristic soma position, and neurite morphology, thus making it possible to establish homologies at the single cell level. Within Chilopoda (centipedes), detailed analyses of major branching patterns of serotonin-immunoreactive neurons are missing, but are crucial for developing meaningful conclusions on the homology of single cells. Results In the present study, we re-investigated the distribution and projection patterns of serotonin-immunoreactive neurons in the ventral nerve cord of three centipede species: Scutigera coleoptrata, Lithobius forficatus, and Scolopendra oraniensis. The centipede serotonergic system in the ventral nerve cord contains defined groups of individually identifiable neurons. An anterior and two posterior immunoreactive neurons per hemiganglion with contralateral projections, a pair of ipsilateral projecting lateral neurons (an autapomorphic character for Chilopoda), as well as a postero-lateral group of an unclear number of cells are present in the ground pattern of Chilopoda. Conclusions Comparisons to the patterns of serotonin-immunoreactive neurons of tetraconate taxa support the homology of anterior and posterior neurons. Our results thus support a sister group relationship of Myriapoda and Tetraconata and, further, a mandibulate ground pattern of individually identifiable serotonin-immunoreactive neurons in the ventral nerve cord. Medial neurons are not considered to be part of the tetraconate ground pattern, but could favor the ‘Miracrustacea hypothesis’, uniting Remipedia, Cephalocarida, and Hexapoda
- …
