13 research outputs found

    Zn uptake, translocation and grain Zn loading in rice (Oryza sativa L.) genotypes selected for Zn deficiency tolerance and high grain Zn

    Get PDF
    Zn deficiency is a widespread problem in rice (Oryza sativa L.) grown under flooded conditions, limiting growth and grain Zn accumulation. Genotypes with Zn deficiency tolerance or high grain Zn have been identified in breeding programmes, but little is known about the physiological mechanisms conferring these traits. A protocol was developed for growing rice to maturity in agar nutrient solution (ANS), with optimum Zn-sufficient growth achieved at 1.5 μM ZnSO4.7H2O. The redox potential in ANS showed a decrease from +350 mV to −200 mV, mimicking the reduced conditions of flooded paddy soils. In subsequent experiments, rice genotypes contrasting for Zn deficiency tolerance and grain Zn were grown in ANS with sufficient and deficient Zn to assess differences in root uptake of Zn, root-to-shoot Zn translocation, and in the predominant sources of Zn accumulation in the grain. Zn efficiency of a genotype was highly influenced by root-to-shoot translocation of Zn and total Zn uptake. Translocation of Zn from root to shoot was more limiting at later growth stages than at the vegetative stage. Under Zn-sufficient conditions, continued root uptake during the grain-filling stage was the predominant source of grain Zn loading in rice, whereas, under Zn-deficient conditions, some genotypes demonstrated remobilization of Zn from shoot and root to grain in addition to root uptake. Understanding the mechanisms of grain Zn loading in rice is crucial in selecting high grain Zn donors for target-specific breeding and also to establish fertilizer and water management strategies for achieving high grain Z

    Time of day and genotype sensitivity adjust molecular responses to temperature stress in sorghum

    No full text
    International audienceSUMMARY Sorghum is one of the four major C4 crops that are considered to be tolerant to environmental extremes. Sorghum shows distinct growth responses to temperature stress depending on the sensitivity of the genetic background. About half of the transcripts in sorghum exhibit diurnal rhythmic expressions emphasizing significant coordination with the environment. However, an understanding of how molecular dynamics contribute to genotype‐specific stress responses in the context of the time of day is not known. We examined whether temperature stress and the time of day impact the gene expression dynamics in thermo‐sensitive and thermo‐tolerant sorghum genotypes. We found that time of day is highly influencing the temperature stress responses, which can be explained by the rhythmic expression of most thermo‐responsive genes. This effect is more pronounced in thermo‐tolerant genotypes, suggesting a stronger regulation of gene expression by the time of day and/or by the circadian clock. Genotypic differences were mostly observed on average gene expression levels, which may be responsible for contrasting sensitivities to temperature stress in tolerant versus susceptible sorghum varieties. We also identified groups of genes altered by temperature stress in a time‐of‐day and genotype‐specific manner. These include transcriptional regulators and several members of the Ca 2+ ‐binding EF‐hand protein family. We hypothesize that expression variation of these genes between genotypes along with time‐of‐day independent regulation may contribute to genotype‐specific fine‐tuning of thermo‐responsive pathways. These findings offer a new opportunity to selectively target specific genes in efforts to develop climate‐resilient crops based on their time‐of‐day and genotype variation responses to temperature stress

    Contrasting grain-Zn response of biofortification rice (Oryza sativa L.) breeding lines to foliar Zn application

    No full text
    Enriching grain Zn concentration in rice through Zn fertilization is one approach to Zn biofortification efforts. Experiments to understand the effectiveness of foliar Zn application at different growth stages in enriching grain Zn of biofortification breeding lines were conducted during the dry season at an experiment station and in a farmer’s field with moderately and severely Zn-deficient soils, respectively. Foliar Zn applications at 4 kg Zn ha−1 as zinc sulfate were given at different growth stages: active tillering, heading, and both active tillering + heading. Foliar Zn application at active tillering had no effect on brown rice Zn concentration, but, at heading, there was a range in genotype response from 1 to 10 mg kg−1 increase, with an average increase of 4 mg kg−1 at the moderately Zn-deficient site and 7 mg kg−1 at the severely Zn-deficient site. At the moderately Zn-deficient site, two biofortification breeding lines (IR83668, IR91152AC) reached the target of 30 mg kg−1 Zn in brown rice without Zn fertilization at heading stage, while two other genotypes (IR68144, IR91143AC) reached the target with heading-stage foliar Zn application. At the severely Zn-deficient site, only one of the tested genotypes (IR68144) reached the target Zn concentration even after foliar Zn application at both active tillering and heading stage and the same genotype recorded the greatest response to foliar Zn (10 mg kg−1 increase). Greater total leaf area at spraying time increased the effectiveness of foliar Zn application at the severely Zn-deficient site only. Foliar Zn application at the two tested growth stages failed to overcome agronomic Zn deficiency. Three of the biofortification breeding lines (IR68144, IR85800, and IR83668) had high grain Zn content that was independent of grain yield. In a separate experiment to test a wider range of spraying times at the severely deficient site with IR64, the spraying at the early milk stage emerged as the most effective stage for increasing brown rice Zn concentration. Our results show that agronomic Zn biofortification through foliar Zn application is likely to be much more effective at increasing grain Zn concentration of genotypes with strong Zn-remobilization capacity than those with weak remobilization capacity

    Enriching rice with Zn and Fe while minimizing Cd risk

    No full text
    Enriching Fe and Zn content in rice grains, while minimizing Cd levels, is important for human health and nutrition. Natural genetic variation in rice grain Zn enables Zn-biofortification through conventional breeding, but limited natural Fe variation has led to a need for genetic modification approaches, including over-expressing genes responsible for Fe storage, chelators, and transporters. Generally, Cd uptake and allocation is associated with divalent metal cations (including Fe and Zn) transporters, but the details of this process are still unknown in rice. In addition to genetic variation, metal uptake is sometimes limited by its bioavailability in the soil. The availability of Fe, Zn, and Cd for plant uptake varies widely depending on soil redox potential. The typical practice of flooding rice increases Fe while decreasing Zn and Cd availability. On the other hand, moderate soil drying improves Zn uptake but also increases Cd and decreases Fe uptake. Use of Zn- or Fe-containing fertilizers complements breeding efforts by providing sufficient metals for plant uptake. In addition, the timing of nitrogen fertilization has also been shown to affect metal accumulation in grains. The purpose of this mini-review is to identify knowledge gaps and prioritize strategies for improving the nutritional value and safety of rice

    Does susceptibility to heat stress confound screening for drought tolerance in rice?

    No full text
    Drought affected rice areas are predicted to double by the end of this century, demanding greater tolerance in widely adapted mega-varieties. Progress on incorporating better drought tolerance has been slow due to lack of appropriate phenotyping protocols. Furthermore, existing protocols do not consider the effect of drought and heat interactions, especially during the critical flowering stage, which could lead to false conclusion about drought tolerance. Screening germplasm and mapping-populations to identify quantitative trait loci (QTL)/candidate genes for drought tolerance is usually conducted in hot dry seasons where water supply can be controlled. Hence, results from dry season drought screening in the field could be confounded by heat stress, either directly on heat sensitive processes such as pollination or indirectly by raising tissue temperature through reducing transpirational cooling under water deficit conditions. Drought-tolerant entries or drought-responsive candidate genes/QTL identified from germplasm highly susceptible to heat stress during anthesis/flowering have to be interpreted with caution. During drought screening, germplasm tolerant to water stress but highly susceptible to heat stress has to be excluded during dry and hot season screening. Responses to drought and heat stress in rice are compared and results from field and controlled environment experiments studying drought and heat tolerance and their interaction are discussed

    Internal Zn allocation influences Zn deficiency tolerance and grain Zn loading in rice (Oryza sativa L.)

    No full text
    One of the important factors that influences Zn deficiency tolerance and grain Zn loading in crops is the within-plant allocation of Zn. Three independent experiments were carried out to understand the internal Zn distribution patterns in rice genotypes grown in Zn-sufficient and Zn-deficient agar nutrient solution (ANS). In one of the experiments, two rice genotypes (IR55179 and KP) contrasting in Zn deficiency tolerance were leaf-labeled with 65Zn. In the other two experiments, two Zn biofortification breeding lines (IR69428 and SWHOO) were either root- or leaf-labeled with 65Zn. Rice genotype IR55179 showed significantly higher Zn deficiency tolerance than KP at 21 and 42 days after planting. When KP was Zn-deficient, it failed to translocate 65Zn from the labeled leaf to newly emerging leaves. Similarly, the root-to-shoot translocation of unlabeled Zn was lower in KP than in IR55179. These results suggest that some Zn-efficient rice genotypes have greater ability to translocate Zn from older to actively growing tissues than genotypes sensitive to Zn deficiency. Among the two Zn biofortication breeding lines that were leaf-labeled with 65Zn at 10 days before panicle initiation stage, 65Zn distribution in the grains at maturity was similar between both genotypes in Zn-sufficient conditions. However, under Zn-deficient conditions, SWHOO accumulated significantly higher 65Zn in grains than IR69428, indicating that SWHOO is a better remobilizer than IR69428. When the roots of these two Zn biofortication breeding lines were exposed to 65Zn solution at 10 days after flowering, IR69428 showed higher root uptake of 65Zn than SWHOO in Zn-sufficient conditions, but 65Zn allocation in the aerial parts of the plant was similar between both genotypes

    Internal Zn allocation influences Zn deficiency tolerance and grain Zn loading in rice (Oryza sativa L.)

    Get PDF
    One of the important factors that influences Zn deficiency tolerance and grain Zn loading in crops is the within-plant allocation of Zn. Three independent experiments were carried out to understand the internal Zn distribution patterns in rice genotypes grown in Zn-sufficient and Zn-deficient agar nutrient solution (ANS). In one of the experiments, two rice genotypes (IR55179 and KP) contrasting in Zn deficiency tolerance were leaf-labeled with 65Zn. In the other two experiments, two Zn biofortification breeding lines (IR69428 and SWHOO) were either root- or leaf-labeled with 65Zn. Rice genotype IR55179 showed significantly higher Zn deficiency tolerance than KP at 21 and 42 days after planting. When KP was Zn-deficient, it failed to translocate 65Zn from the labeled leaf to newly emerging leaves. Similarly, the root-to-shoot translocation of unlabeled Zn was lower in KP than in IR55179. These results suggest that some Zn-efficient rice genotypes have greater ability to translocate Zn from older to actively growing tissues than genotypes sensitive to Zn deficiency. Among the two Zn biofortication breeding lines that were leaf-labeled with 65Zn at 10 days before panicle initiation stage, 65Zn distribution in the grains at maturity was similar between both genotypes in Zn-sufficient conditions. However, under Zn-deficient conditions, SWHOO accumulated significantly higher 65Zn in grains than IR69428, indicating that SWHOO is a better remobilizer than IR69428. When the roots of these two Zn biofortication breeding lines were exposed to 65Zn solution at 10 days after flowering, IR69428 showed higher root uptake of 65Zn than SWHOO in Zn-sufficient conditions, but 65Zn allocation in the aerial parts of the plant was similar between both genotypes.ISSN:1664-462

    Irrigating with cooler water does not reverse high temperature impact on grain yield and quality in hybrid rice

    No full text
    Rice grain yield and quality are negatively impacted by high temperature stress. Irrigation water temperature significantly affects rice growth and development, thus influencing yield and quality. The role of cooler irrigation water in counteracting high temperature induced damages in rice grain yield and quality are not explored. Hence, in the present study two rice hybrids, Liangyoupeijiu (LYPJ) and IIyou 602 (IIY602) were exposed to heat stress and irrigated with water having different temperatures in a split-split plot experimental design. The stress was imposed starting from heading until maturity under field-based heat tents, over two consecutive years. The maximum day temperature inside the heat tents was set at 38 °C. For the irrigation treatments, two different water sources were used including belowground water with cooler water temperature and pond water with relatively higher water temperature. Daytime mean temperatures in the heat tents were increased by 1.2–2.0 °C across two years, while night-time temperature remained similar at both within and outside the heat tents. Cooler belowground water irrigation did have little effect on air temperature at the canopy level but decreased soil temperature (0.2–1.4 °C) especially under control. Heat stress significantly reduced grain yield (33% to 43%), panicles m−2 (9% to 10%), spikelets m−2 (15% to 22%), grain-filling percentage (13% to 26%) and 1000-grain weight (3% to 5%). Heat stress significantly increased chalkiness and protein content and decreased grain length and amylose content. Grain yield was negatively related to air temperature at the canopy level and soil temperature. Whereas grain quality parameters like chalkiness recorded a significantly positive association with both air and soil temperatures. Irrigating with cooler belowground water reduced the negative effect of heat stress on grain yield by 8.8% in LYPJ, while the same effect was not seen in IIY602, indicating cultivar differences in their response to irrigation water temperature. Our findings reveal that irrigating with cooler belowground water would not significantly mitigate yield loss or improve grain quality under realistic field condition. The outcome of this study adds to the scientific knowledge in understanding the interaction between heat stress and irrigation as a mitigation tool. Irrigation water temperature regulation at the rhizosphere was unable to counteract heat stress damages in rice and hence a more integrated management and genetic options at canopy levels should be explored in the future
    corecore