344 research outputs found

    Human transcription factor YY1 represses human immunodeficiency virus type 1 transcription and virion production

    Get PDF
    The transcriptional activity of human immunodeficiency virus type 1 (HIV-1) is affected by many cellular factors. Homologies near the HIV-1 initiator region to the DNA-binding sequences of YY1, a multifunctional transcription factor known to regulate diverse viral and cellular promoters, suggested that YY1 might regulate HIV-1. Antibody to YY1 blocked the formation of complexes by HeLa cell nuclear extract and a DNA oligonucleotide encoding the HIV-1 initiator region. HIV-1 long terminal repeat (LTR) expression, as measured the expression of a transfected LTR-CAT reporter gene, was repressed more than 12-fold by the cotransfection of a YY1 expression vector. HIV-1 production by both COS-1 and CEM cells after transfection of an infectious molecular HIV-1 clone was repressed 7- to 20-fold by cotransfection of a YY1 expression vector. HIV-1 production was also decreased threefold in a CD4-positive lymphocyte cell line chronically infected with HIV-1 (8E5) after transfection of YY1. In situ hybridization studies confirmed that YY1 reduced HIV-1 RNA expression. YY1 may play an important role in the regulation of HIV-1 LTR expression in vivo and virus production by infected cells

    Chemical analysis by X-ray spectroscopy near phase transitions in the solid state

    Get PDF
    The methods discussed in this work show that the types of changes which may be observed, by precise XAS measurements of Absorbance A versus temperature, across a phase transition are: the changes in the relaxation time of the final states due to fluctuations near a phase transition; the detection of the anomalous Bragg condition coupled to phonon modes XAS enhancement that identifies the temperature interval where the phonon modes are active, the symmetry changes which introduce new allowed transitions to finite states below an element edge, near Tc indicate what symmetry changes occur, and the method of XTDAFST0 = XAFS(T) - XAFS(T0), allows the precise measurement of the progressive changes in the Debye-Waller factor versus T near a phase transition, and identify (when no other structural changes occur, except in the vibrational modes of a specific bond) the bond responsible for the transition. The methods have been applied to the superconducting transition in layer cuprates and the metal to insulator transition in NiS2-xSex

    Epstein-barr virus latent membrane protein 1 genetic variability in peripheral blood B cells and oropharyngeal fluids

    Get PDF
    We report the diversity of latent membrane protein 1 (LMP1) gene founder sequences and the level of Epstein-Barr virus (EBV) genome variability over time and across anatomic compartments by using virus genomes amplified directly from oropharyngeal wash specimens and peripheral blood B cells during acute infection and convalescence. The intrahost nucleotide variability of the founder virus was 0.02% across the region sequences, and diversity increased significantly over time in the oropharyngeal compartment (P = 0.004). The LMP1 region showing the greatest level of variability in both compartments, and over time, was concentrated within the functional carboxyl-terminal activating regions 2 and 3 (CTAR2 and CTAR3). Interestingly, a deletion in a proline-rich repeat region (amino acids 274 to 289) of EBV commonly reported in EBV sequenced from cancer specimens was not observed in acute infectious mononucleosis (AIM) patients. Taken together, these data highlight the diversity in circulating EBV genomes and its potential importance in disease pathogenesis and vaccine design. IMPORTANCE: This study is among the first to leverage an improved high-throughput deep-sequencing methodology to investigate directly from patient samples the degree of diversity in Epstein-Barr virus (EBV) populations and the extent to which viral genome diversity develops over time in the infected host. Significant variability of circulating EBV latent membrane protein 1 (LMP1) gene sequences was observed between cellular and oral wash samples, and this variability increased over time in oral wash samples. The significance of EBV genetic diversity in transmission and disease pathogenesis are discussed

    HIV-1 R5 Macrophage-Tropic Envelope Glycoprotein Trimers Bind CD4 with High Affinity, while the CD4 Binding Site on Non-macrophage-tropic, T-Tropic R5 Envelopes Is Occluded

    Get PDF
    HIV-1 R5 variants exploit CCR5 as a coreceptor to infect both T cells and macrophages. R5 viruses that are transmitted or derived from immune tissue and peripheral blood are mainly inefficient at mediating infection of macrophages. In contrast, highly macrophage-tropic (mac-tropic) R5 viruses predominate in brain tissue and can be detected in cerebrospinal fluid but are infrequent in immune tissue or blood even in late disease. These mac-tropic R5 variants carry envelope glycoproteins (Envs) adapted to exploit low levels of CD4 on macrophages to induce infection. However, it is unclear whether this adaptation is conferred by an increased affinity of the Env trimer for CD4 or is mediated by postbinding structural rearrangements in the trimer that enhance the exposure of the coreceptor binding site and facilitate events leading to fusion and virus entry. In this study, we investigated CD4 binding to mac-tropic and non-mac-tropic Env trimers and showed that CD4-IgG binds efficiently to mac-tropic R5 Env trimers, while binding to non-mac-tropic trimers was undetectable. Our data indicated that the CD4 binding site (CD4bs) is highly occluded on Env trimers of non-mac-tropic R5 viruses. Such viruses may therefore infect T cells via viral synapses where Env and CD4 become highly concentrated. This environment will enable high-avidity interactions that overcome extremely low Env-CD4 affinities. IMPORTANCE HIV R5 variants bind to CD4 and CCR5 receptors on T cells and macrophages to initiate infection. Transmitted HIV variants infect T cells but not macrophages, and these viral strains persist in immune tissue even in late disease. Here we show that the binding site for CD4 present on HIV\u27s envelope protein is occluded on viruses replicating in immune tissue. This occlusion likely prevents antibody binding to this site and neutralization of the virus, but it makes it difficult for virus-CD4 interactions to occur. Such viruses probably pass from T cell to T cell via cell contacts where CD4 is highly concentrated and allows infection via inefficient envelope-CD4 binding. Our data are highly relevant for vaccines that aim to induce antibodies targeting the CD4 binding site on the envelope protein

    Polarized Neutron Reflectometry of Nickel Corrosion Inhibitors.

    Get PDF
    Polarized neutron reflectometry has been used to investigate the detailed adsorption behavior and corrosion inhibition mechanism of two surfactants on a nickel surface under acidic conditions. Both the corrosion of the nickel surface and the structure of the adsorbed surfactant layer could be monitored in situ by the use of different solvent contrasts. Layer thicknesses and roughnesses were evaluated over a range of pH values, showing distinctly the superior corrosion inhibition of one negatively charged surfactant (sodium dodecyl sulfate) compared to a positively charged example (dodecyl trimethylammonium bromide) due to its stronger binding interaction with the surface. It was found that adequate corrosion inhibition occurs at significantly less than full surface coverage.X-ray photoelectron spectra were obtained at the National Engineering and Physical Sciences Research Council (EPSRC) XPS User’s Service (NEXUS) at Newcastle University, an EPSRC midrange facility. NR data were obtained on the D17 instrument, and samples were treated in the laboratories of the Partnership for Soft Condensed Matter (PSCM) at the Institut Laue-Langevin. M.H.W. is grateful for funding from the Oppenheimer Trust.This is the final version of the article. It first appeared from the American Chemical Society via http://dx.doi.org/10.1021/acs.langmuir.5b0171
    corecore