171 research outputs found

    Impact of nuclear dependence of R=\sigma_L/\sigma_T on antishadowing in nuclear structure functions

    Full text link
    We study the impact of the nuclear dependence of R=\sigma_L/\sigma_T on the extraction of the F_2^A/F_2^D and F_1^A/F_1^D structure function ratios from the data on the \sigma^A/\sigma^D cross section ratios. Guided by indications of the nuclear dependence of R from the world data, we examine selected sets of EMC, BCDMS, NMC and SLAC data and find that F_1^A/F_1^D < \sigma^A/\sigma^D \leq F_2^A/F_2^D. In particular, we observe that the nuclear enhancement (antishadowing) for F_1^A/F_1^D in the interval 0.1 < x < 0.3 becomes significantly reduced or even disappears, which indicates that antishadowing is dominated by the longitudinal structure function F_L. We also argue that precise measurements of nuclear modifications of R and F_L^A have the potential to constrain the poorly known gluon distribution in nuclei over a wide range of x.Comment: 9 pages, 8 figures, 1 tabl

    Moments of the neutron g(2) structure function at intermediate Q(2)

    Get PDF
    We present new experimental results for the He-3 spin structure function g(2) in the resonance region atQ 2 values between 1.2 and 3.0 (GeV/c)(2). Spin dependent moments of the neutron were extracted. Our main result, the inelastic contribution to the neutron d(2) matrix element, was found to be small at \u3c Q(2)\u3e = 2.4 (GeV/c)(2) and in agreement with the lattice QCD calculation. The Burkhardt-Cottingham sum rule for He-3 and the neutron was tested with the measured data and using the Wandzura-Wilczek relation for the low x unmeasured region

    Search for Three-Nucleon Short-Range Correlations in Light Nuclei

    Get PDF
    We present new data probing short-range correlations (SRCs) in nuclei through the measurement of electron scattering off high-momentum nucleons in nuclei. The inclusive 4He/3He cross section ratio is observed to be both x and Q2 independent for 1.5 \u3c x \u3c 2, confirming the dominance of two-nucleon short-range correlations. For x \u3e 2, our data support the hypothesis that a previous claim of three-nucleon correlation dominance was an artifact caused by the limited resolution of the measurement. While 3N-SRCs appear to have an important contribution, our data show that isolating 3N-SRCs is significantly more complicated than for 2N-SRCs

    Moments of the Neutron \u3cem\u3eg\u3c/em\u3e\u3csub\u3e2\u3c/sub\u3e Structure Function at Intermediate \u3cem\u3eQ\u3c/em\u3e\u3csup\u3e2\u3c/sup\u3e

    Get PDF
    We present new experimental results for the 3He spin structure function g2 in the resonance region at Q2 values between 1.2 and 3.0(GeV/c)2. Spin dependent moments of the neutron were extracted. Our main result, the inelastic contribution to the neutron d2 matrix element, was found to be small at ⟨Q2⟩=2.4(GeV/c)2 and in agreement with the lattice QCD calculation. The Burkhardt-Cottingham sum rule for 3He and the neutron was tested with the measured data and using the Wandzura-Wilczek relation for the low x unmeasured region

    Precision Electron-Beam Polarimetry using Compton Scattering at 1 GeV

    Get PDF
    We report on the highest precision yet achieved in the measurement of the polarization of a low energy, O\mathcal{O}(1 GeV), electron beam, accomplished using a new polarimeter based on electron-photon scattering, in Hall~C at Jefferson Lab. A number of technical innovations were necessary, including a novel method for precise control of the laser polarization in a cavity and a novel diamond micro-strip detector which was able to capture most of the spectrum of scattered electrons. The data analysis technique exploited track finding, the high granularity of the detector and its large acceptance. The polarization of the 180 μ180~\muA, 1.161.16~GeV electron beam was measured with a statistical precision of <<~1\% per hour and a systematic uncertainty of 0.59\%. This exceeds the level of precision required by the \qweak experiment, a measurement of the vector weak charge of the proton. Proposed future low-energy experiments require polarization uncertainty <<~0.4\%, and this result represents an important demonstration of that possibility. This measurement is also the first use of diamond detectors for particle tracking in an experiment.Comment: 9 pages, 7 figures, published in PR

    Probing the high momentum component of the deuteron at high Q^2

    Full text link
    The d(e,e'p) cross section at a momentum transfer of 3.5 (GeV/c)^2 was measured over a kinematical range that made it possible to study this reaction for a set of fixed missing momenta as a function of the neutron recoil angle theta_nq and to extract missing momentum distributions for fixed values of theta_nq up to 0.55 GeV/c. In the region of 35 (deg) <= theta_nq <= 45 (deg) recent calculations, which predict that final state interactions are small, agree reasonably well with the experimental data. Therefore these experimental reduced cross sections provide direct access to the high momentum component of the deuteron momentum distribution in exclusive deuteron electro-disintegration.Comment: 5 pages, 2 figure

    Quark-Hadron Duality in Neutron (3He) Spin Structure

    Full text link
    We present experimental results of the first high-precision test of quark-hadron duality in the spin-structure function g_1 of the neutron and 3^3He using a polarized 3He target in the four-momentum-transfer-squared range from 0.7 to 4.0 (GeV/c)^2. Global duality is observed for the spin-structure function g_1 down to at least Q^2 = 1.8 (GeV/c)^2 in both targets. We have also formed the photon-nucleon asymmetry A_1 in the resonance region for 3He and found no strong Q^2-dependence above 2.2 (GeV/c)^2.Comment: 13 pages, 3 figure

    Deeply Virtual Compton Scattering off the neutron

    Full text link
    The present experiment exploits the interference between the Deeply Virtual Compton Scattering (DVCS) and the Bethe-Heitler processes to extract the imaginary part of DVCS amplitudes on the neutron and on the deuteron from the helicity-dependent D(e,eγ)X({\vec e},e'\gamma)X cross section measured at Q2Q^2=1.9 GeV2^2 and xBx_B=0.36. We extract a linear combination of generalized parton distributions (GPDs) particularly sensitive to EqE_q, the least constrained GPD. A model dependent constraint on the contribution of the up and down quarks to the nucleon spin is deduced.Comment: Published in Phys. Rev. Let

    The E00-110 experiment in Jefferson Lab's Hall A: Deeply Virtual Compton Scattering off the Proton at 6 GeV

    Get PDF
    We present final results on the photon electroproduction (epepγ\vec{e}p\rightarrow ep\gamma) cross section in the deeply virtual Compton scattering (DVCS) regime and the valence quark region from Jefferson Lab experiment E00-110. Results from an analysis of a subset of these data were published before, but the analysis has been improved which is described here at length, together with details on the experimental setup. Furthermore, additional data have been analyzed resulting in photon electroproduction cross sections at new kinematic settings, for a total of 588 experimental bins. Results of the Q2Q^2- and xBx_B-dependences of both the helicity-dependent and helicity-independent cross sections are discussed. The Q2Q^2-dependence illustrates the dominance of the twist-2 handbag amplitude in the kinematics of the experiment, as previously noted. Thanks to the excellent accuracy of this high luminosity experiment, it becomes clear that the unpolarized cross section shows a significant deviation from the Bethe-Heitler process in our kinematics, compatible with a large contribution from the leading twist-2 DVCS2^2 term to the photon electroproduction cross section. The necessity to include higher-twist corrections in order to fully reproduce the shape of the data is also discussed. The DVCS cross sections in this paper represent the final set of experimental results from E00-110, superseding the previous publication.Comment: 48 pages, 32 figure
    corecore