347 research outputs found
Protection of gnotobiotic Artemia against Vibrio campbellii using baker’s yeast strains and extracts
Improvement of critical current in MgB2/Fe wires by a ferromagnetic sheath
Transport critical current (Ic) was measured for Fe-sheathed MgB2 round
wires. A critical current density of 5.3 x 10^4 A/cm^2 was obtained at 32K.
Strong magnetic shielding by the iron sheath was observed, resulting in a
decrease in Ic by only 15% in a field of 0.6T at 32K. In addition to shielding,
interaction between the iron sheath and the superconductor resulted in a
constant Ic between 0.2 and 0.6T. This was well beyond the maximum field for
effective shielding of 0.2T. This effect can be used to substantially improve
the field performance of MgB2/Fe wires at fields at least 3 times higher than
the range allowed by mere magnetic shielding by the iron sheath. The dependence
of Ic on the angle between field and current showed that the transport current
does not flow straight across the wire, but meanders between the grains
Pigment Melanin: Pattern for Iris Recognition
Recognition of iris based on Visible Light (VL) imaging is a difficult
problem because of the light reflection from the cornea. Nonetheless, pigment
melanin provides a rich feature source in VL, unavailable in Near-Infrared
(NIR) imaging. This is due to biological spectroscopy of eumelanin, a chemical
not stimulated in NIR. In this case, a plausible solution to observe such
patterns may be provided by an adaptive procedure using a variational technique
on the image histogram. To describe the patterns, a shape analysis method is
used to derive feature-code for each subject. An important question is how much
the melanin patterns, extracted from VL, are independent of iris texture in
NIR. With this question in mind, the present investigation proposes fusion of
features extracted from NIR and VL to boost the recognition performance. We
have collected our own database (UTIRIS) consisting of both NIR and VL images
of 158 eyes of 79 individuals. This investigation demonstrates that the
proposed algorithm is highly sensitive to the patterns of cromophores and
improves the iris recognition rate.Comment: To be Published on Special Issue on Biometrics, IEEE Transaction on
Instruments and Measurements, Volume 59, Issue number 4, April 201
Carbon-substitution effect on the electronic properties of MgB single crystals
The electronic properties of the carbon substituted MgB single crystals
are reported. The carbon substitution drops T below 2 K. In-plane
resistivity shows a remarkable increase in residual resistivity by
C-substitution, while the change of in-plane/out-of-plane Hall coefficients is
rather small. Raman scattering spectra indicate that the E-phonon
frequency radically hardens with increasing the carbon-content, suggesting the
weakening of electron-phonon coupling. Another striking C-effect is the
increases of the second critical fields in both in-plane and out-of-plane
directions, accompanied by a reduction in the anisotropy ratio. The possible
changes in the electronic state and the origin of T-suppression by
C-substitution are discussed.Comment: 6 pages, 8 figure
Superconducting screening on different length scales in high-quality bulk MgB2 superconductor
High quality bulk MgB2 exhibit a structure of voids and agglomeration of
crystals on different length-scales. Because of this, the superconducting
currents percolate between the voids in the ensuing structure. Magnetic
measurements reveal that the superconducting currents circulate on at least
three different length-scales, of ~1 micrometre, ~10 micrometre and whole of
the sample (~millimetre). Each of these screenings contributes to the measured
irreversible magnetic moment (Dm). The analysis of the field dependence of Dm
for samples of subsequently decreasing size showed that the critical current
obtained using the simple critical state model is erroneous. This leads to the
artefact of the sample size-dependent critical current and irreversibility
field. Our data analysis enables the separation of the contribution of each of
the screening currents to Dm. The field dependence of each of the currents
follows a stretched exponential form. The currents flowing around whole of the
sample give a dominant contribution to Dm in the intermediate fields (1T < H <
4T at 20K) and they can be used to obtain the value of Jc from critical state
model, which corresponds to the transport Jc
Transport critical current of Solenoidal MgB2/Cu Coils Fabricated Using a Wind-Reaction In-situ Technique
In this letter, we report the results of transport Jc of solenoid coils upto
100 turns fabricated with Cu-sheathed MgB2 wires using a wind-reaction in-situ
technique. Despite the low density of single core and some reaction between Mg
and Cu-sheath, our results demonstrate the decrease in transport Jc with
increasing length of MgB2 wires is insignificant. Solenoid coils with diameter
as small as 10 mm can be readily fabricated using a wind-reaction in-situ
technique. The Jc of coils is essentially the same as in the form of straight
wires. A Jc of 133,000 A/cm2 and 125,000 A/cm2 at 4 K and self field has been
achieved for a small coil wound using Cu-sheathed tape and Cu-sheathed wire
respectively. These results indicate that the MgB2 wires have a great potential
for lage scale applicationsComment: 6 pages, 4 figures, 1 tabl
Very fast formation of superconducting MgB2/Fe wires with high Jc
In this paper we have investigated the effects of sintering time and
temperature on the formation and critical current densities of Fe-clad MgB2
wires. MgB2 wires were fabricated using the powder-in-tube process and sintered
for different periods of time at predetermined temperatures. All the samples
were examined using XRD, SEM and magnetisation measurements. In contrast to the
common practice of sintering for several hours, the present results show that
there is no need for prolonged heat treatment in the fabrication of Fe-clad
MgB2 wires. A total time in the furnace of several minutes is more than enough
to form nearly pure MgB2 with high performance characteristics. The results
from Tc, Jc and Hirr show convincingly that the samples which were sintered for
3 minutes above 800 oC are as good as those sintered for longer times. In fact,
the Jc field performance for the most rapidly sintered sample is slightly
better than for all other samples. Jc of 4.5 times 10 ^5 A/cm2 in zero field
and above 10 ^5 A/cm2 in 2T at 15 K has been achieved for the best Fe-clad MgB2
wires. As a result of such a short sintering there is no need for using high
purity argon protection and it is possible to carry out the heat treatment in a
much less protective atmosphere or in air. These findings substantially
simplify the fabrication process, making it possible to have a continuous
process for fabrication and reducing the costs for large-scale production of
MgB2 wires.Comment: 15 pages, one table, 9 figures, submitted to Physica C on June 8,
200
Influence of different yeast cell-wall mutants on performance and protection against pathogenic bacteria (<i>Vibrio campbellii</i>) in gnotobiotically-grown <i>Artemia</i>
A selection of isogenic yeast strains (with deletion for genes involved in cell-wall synthesis) was used to evaluate their nutritional and immunostimulatory characteristics for gnotobiotically-grown Artemia. In the first set of experiments the nutritional value of isogenic yeast strains (effected in mannoproteins, glucan, chitin and cell-wall bound protein synthesis) for gnotobiotically-grown Artemia was studied. Yeast cell-wall mutants were always better feed for Artemia than the isogenic wild type mainly because they supported a higher survival but not a stronger individual growth. The difference in Artemia performance between WT and mutants feeding was reduced when stationary-phase grown cells were used. These results suggest that any mutation affecting the yeast cell-wall make-up is sufficient to improve the digestibility in Artemia. The second set of experiments, investigates the use of a small amount of yeast cells in gnotobiotic Artemia to overcome pathogenicity of Vibrio campbellii (VC). Among all yeast cell strains used in this study, only mnn9 yeast (less cell-wall bound mannoproteins and more glucan and chitin) seems to completely protect Artemia against the pathogen. Incomplete protection against the pathogen was obtained by the gas1 and chs3 mutants, which are lacking the gene for a particular cell-wall protein and chitin synthesis, respectively, resulting in more glucan. The result with the chs3 mutant is of particular interest, as its nutritional value for Artemia is comparable to the wild type. Hence, only with the chs3 strain, in contrast to the gas1 or mnn9 strains, the temporary protection to VC is not concomitant with a better growth performance under non-challenged conditions, suggesting non-interference of general nutritional effects
- …