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Introduction 
 
 
I. Importance of aquaculture 
 
Capture fisheries and aquaculture supplied the world with about 106 million tonnes of food fish in 

2004, providing an apparent per capita supply of 16.6 kg (live weight equivalent), which is the 

highest on record (Table 1.1 and Fig. 1.1) (FAO, 2006). Of this supply, aquaculture accounted for 

43 percent. The contribution of aquaculture to global supplies of fish, crustaceans, molluscs and 

other aquatic animals continues to grow, increasing from 3.9 percent of total production by weight 

in 1970 over 27.1 percent in 2000 and 32.4 percent in 2004 (FAO, 2006). Aquaculture production in 

terms of quantity and value for major species groups in 2004 is presented in Fig. 1.2. 

Aquaculture continues to grow more rapidly than any other animal food-producing sectors. 

Worldwide, the sector has grown at an average rate of 8.8 percent per year since 1970, compared 

with only 1.2 percent for capture fisheries and 2.8 percent for terrestrial farmed meat production 

systems over the same period. As capture fisheries are expected to stagnate, the increasing demand 

for aquatic products will have to be provided by aquaculture. The per capita supply from 

aquaculture increased from 0.7 kg in 1970 to 7.1 kg in 2004. 

At the global animal production level, animal disease outbreaks could represent an important source 

of uncertainty. For example, during the past few years, and particularly in 2004 and 2005, the 

international market for meats was disrupted by outbreaks of animal diseases such as avian 

influenza and bovine spongiform encephalopathy (BSE). This situation, together with the related 

import bans, led to an inducted shortage in meat supplies in some countries, particularly of poultry, 

pushing up international meat prices in 2004 and 2005 (+30 percent for poultry in 2004–05) and 

driving consumers towards alternative protein sources, including fish. 

World aquaculture (food fish and aquatic plants) has grown significantly during the past half-

century. From a production of below 1 million tonnes in the early 1950s production in 2004 was 

reported to have risen to 59.4 million tonnes, with a value of US$ 70.3 billion. This represents an 

average annual increase of 6.9 percent in quantity and 7.7 percent in value over reported figures for 
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2002. In 2004, countries in the Asia and the Pacific region accounted for 91.5 percent of the 

production quantity and 80.5 percent of the value. Of the world total, China is reported to account 

for 69.6 percent of the total quantity and 51.2 percent of the total value of aquaculture production 

(see below).  

 
Table 1.1- World fisheries and aquaculture production and utilization  (adapted from FAO, 2006) 
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Fig.1.1- World capture and aquaculture production (adapted from FAO, 2006) 
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Fig.1.2- World aquaculture production by major species groups in 2004 (After FAO, 2006). 

 
 
 
II. Diseases control in aquaculture 
 
Diseases are still the major constraint of aquaculture production and trade (FAO, 2004) causing 

unpredictable massive mortalities especially in the early life stages of aquatic organisms (mainly for 
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marine fish and shellfish species) as a result of the proliferation of pathogenic and opportunistic 

microorganisms in the culture systems. The trade and movement of live aquatic organisms has 

increased the worldwide translocation of pathogens resulting in a fast spread of diseases. Several 

solutions have been applied to control diseases in aquaculture.  

Many chemotherapeutics, such as antibiotics, drugs and other pharmacologically active compounds, 

either in the culture water or in the fish feed (Touraki et al., 1999; Vaseeharan et al., 2004) have 

been used. These antimicrobial drugs contributed to the development of aquaculture. They were 

administered not only as therapeutic but also as preventive solutions to avoid diseases. However, 

extreme use of antibiotics can cause several environmental disorders (e.g. contamination of the 

culture environment, damage to organisms, and creation of bacterial resistance that can be spread in 

the food chain (Kautsky et al., 2000) as well as human health disorders (e.g. allergies, toxic effect, 

changing the microflora of gastrointestinal tract and production of antimicrobial-resistant 

pathogenic bacteria).  

Although antibiotics are still used in some hatcheries, their application is gradually banned or 

restricted due to severe negative side effects. 

Nowadays, several alternative and environmental-friendly prophylactic and preventive methods are 

being developed to control diseases and to maintain a healthy microbial environment in aquaculture 

systems. 

One approach is the improvement of the larval quality through better nutrition, focusing on 

beneficial effects of some nutrients, such as unsaturated fatty acids, sterols, proteins, carbohydrates, 

trace elements and vitamins (Lall, 2000; Soudant et al., 2000; Lavens and Sorgeloos, 2000; Chen et 

al., 2005). It is well known that nutritional and physical characteristics of diets can modulate 

susceptibility of an organism to infectious diseases (Lall, 2000). Another approach currently gaining 

acceptance within the aquaculture industry is the use of probiotic microorganisms as a prophylactic 

and preventive solution against diseases. 
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There is increasing evidence that microflora manipulation, or addition of probionts, may improve 

health conditions, enhance larval survival and prevent the proliferation and colonization of 

opportunistic and/or pathogenic bacteria in intensive rearing systems (Gatesoupe, 1999; Verschuere 

et al., 2000a; Villamil et al., 2003; Gullian et al., 2004; Vázquez et al., 2005). However, the results 

obtained in laboratory conditions are sometimes different from those observed in the field. This 

limitation can eventually be lifted by studying in detail the host-microbial interactions. 

The use of microbially matured water is another technique that is applied in aquaculture. In fact, 

microbial maturation of seawater with a biofilter or water from previously well-performing cultures 

can be useful tools to control the microbiota, protecting marine larvae from the proliferation of 

detrimental opportunistic bacteria, eventually resulting in enhanced larval performance. (Skjermo et 

al., 1997). 

Green water technique is another tool, which is based on the addition of microalgae in closed water 

systems under low light-intensity conditions that do not allow their proliferation (Papandroulakis et 

al., 2001). Several studies indicate that some microalgae and cyanobacteria provide beneficial 

effects to the cultured organisms (Cahu et al., 1998; Cohen, 1999; Salvesen et al., 2000; Pulz and 

Gross, 2004). 

The induction of Heat Shock Protein (HSP) expression can activate the immune system of an 

organism resulting in increased tolerance to diseases and stress induced by environmental changes 

(Jean et al., 2004). 

Another method to control infectious diseases is the use of vaccines and immunostimulants. Aquatic 

invertebrates and fish larvae cannot rely on an acquired immune system to combat disease, but have 

to rely on the innate immune system (Kurtz and Franz, 2003; Little and Kraaijeveld, 2004) 

consisting of cellular and humoral components (e.g. lysozymes, lysosomal enzymes, lectins, or 

antibacterial components) that interplay to recognise and eliminate foreign microorganisms and 

pathogens (Bachère, 2003). Vertebrates in later life stages and some invertebrates present both 

innate and acquired immunity (Little and Kraaijeveld, 2004). The latest immunity is adaptive, 
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flexible, specific and based on immunoglobulins and specified immune cells (in vertebrates) that 

improve the efficiency of the host’s immune response during the second encounter with a pathogen 

(Moret and Siva-Jothy, 2003). 

Vaccination can induce long-lasting protection through immunological memory and needs primary 

challenge with an antigen (Smith et al., 2003). Application of vaccines in adult fish with fully 

developed immune system is very successful (Alabi et al., 2000; McLauchlan et al., 2003; Irie et 

al., 2005). However, vaccines are not available for all pathogens, usually involve stressful handling 

of animals, and are ineffective with most invertebrates and early life stages of vertebrates (Olafsen, 

2001). 

Immunostimulants are naturally occurring compounds that modulate the immune system by 

increasing the host's resistance against diseases that in most circumstances are caused by pathogens 

(Bricknell and Dalmo, 2005). 

The use of immunostimulants can improve the innate defense of animals. It does not require a 

specific response to a defined antigen and provides resistance to pathogens during periods of high 

stress, such as grading, reproduction, sea transfer and vaccination. The immunomodulation of larval 

fish has been proposed as a potential method for improving larval survival by increasing the innate 

responses of the developing animals until its adaptive immune response is sufficiently developed to 

mount an effective response to the pathogen. Several products, such as β-glucans, chitin, 

mannoproteins, peptidoglycans, alginate and bacterial components (e.g. lipopolysaccharides) are 

being applied in vertebrate and invertebrate cultures, to induce protection against a wide range of 

diseases (Boonyaratpalin et al., 1995; Sung et al., 1996; Itami et al., 1998; Alabi et al., 1999; 

Sritunyalucksana et al., 1999; Takahashi et al., 2000; Burgents et al., 2004; Misra et al., 2004; 

Skjermo and Bergh, 2004; Wang and Chen, 2005). 

 Saccharomyces cerevisiae, which has been found to be a good immune enhancer in some aquatic 

organisms (Siwicki et al., 1994; Ortuño et al., 2002; Li et al., 2003, 2004), is an excellent source of 

β-glucans and chitin. The latter compounds are the major compounds in the yeast cell wall together 
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with mannoproteins (Magnelli et al., 2002). Application of yeast cells as immunostimulants has 

many advantages. Firstly they can be produced rapidly, easily and inexpensively, and at the same 

time, they are very stable and can be obtained as by-products from other industries. Yeast also 

enjoys the GRAS status (GRAS: generally regarded as safe), so that no negative effects are 

expected neither on the animals nor on the environment. Moreover, there is no need to isolate its 

components, which consists mainly of cell wall sugars (β-glucans, mannoproteins and chitin), all 

well-proved immunostimulant extracts. The combination of all the yeast cell compounds, not only 

cell wall sugars but also vitamins and genetic material, might provide a mixture assuring an 

optimum physiological status in fish due to multiple interactions, particularly with regards to the 

immune system (Kulkarni et al., 1987; Rudolph et al., 1990; Cerra et al., 1991). Moreover, yeasts 

are easily genetically manipulated enabling various modifications of the composition of the yeast 

cell-wall through the construction of gene deletion mutants. All these scientific and economic 

reasons make further investigation into baker’s yeast S.cerevisiae and other industrially used 

microorganism a worthy topic of research since they may constitute an inexpensive alternative to 

the expensive isolated components usually used in fish diet formulations.  

Although there are many studies published on the application of immunostimulants in aquaculture, 

they have mostly been performed under xenic conditions where it is very difficult to separate the 

effect of the feed compositions from the effect (or interaction) of the accompanying microbiota (i.e. 

nutritional or probiotic effects as reported by Marques et al., 2005). In addition, the beneficial 

effects of immunostimulants in many cases have been questioned due to poor experimental design 

and absence of a reliable statistical analysis (Smith et al., 2003). Therefore, Marques et al. (2004) 

have recently developed and standardized an Artemia gnotobiotic test system allowing to study the 

effect of food composition on survival and growth of Artemia in the presence or absence of a 

pathogen, providing a framework to acquire knowledge on host-microbial interactions. 
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III. Artemia 

3.1. Importance of Artemia to aquaculture 
  

Regardless of the vast improvement in fish nutrition industry there is still no artificial feed 

formulation available to completely substitute for Artemia. In fact, Artemia remains essential in 

most marine finfish and shellfish hatchery operations especially during the earliest life stages 

(Kolkovski et al., 2004). Artemia is the most widely used live feed in larviculture due to its high 

nutritional quality (Sorgeloos et al., 1986) and ease of use. Annually, more than 1,500 metric tonnes 

of dry Artemia cysts are marketed worldwide to feed fish and shellfish (Dhont and Sorgeloos, 

2002). Shrimp hatcheries are the major consumers of Artemia cysts (80 to 85% of the total sales), 

mainly in China, South East Asia, Ecuador and other Latin-American countries. 

 

3.2. Particular characteristics of Artemia 
 

The brine shrimp Artemia is a small crustacean occurring almost worldwide in natural brine lakes or 

salt works. Artemia are extremely osmotolerant and is mostly found in salinities ranging between 

45g/l and 200g/l, although they are able to live in brackish and supersaturated waters 340g/l) (Van 

Stappen, 1996, 2002). Artemia are also adapted to widely changeable temperature (6-35°C) and 

ionic composition, and their pH tolerance varies from neutral to highly alkaline (Van Stappen, 

1996, 2002). They can produce cysts (a dormant embryo covered by a three-layered shell) through 

oviparous reproduction when the environmental conditions are harsh (Criel and MacRae, 2002). 

These cysts are easily collected in high quantities, since most of them float. After proper processing, 

they can be stored for several years at room temperature, remaining in diapause or staying dormant 

as long as they are kept dry and under anaerobic conditions (Van Stappen, 2002). Under optimal 

hatching conditions, the embryo becomes activated within the cyst shell and, within 24h, the shell 

breaks and nauplii (or Instar I) of 0.4-0.5mm hatch out of the cyst (Van Stappen, 1996).  After about 
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8h, the Instar I nauplius moults into the 2nd larval stage (Instar II) and is now able to take up 

exogenous particles. The larva grows through 15 moults and becomes differentiated into male or 

female (at least for sexual species) after the tenth moult (Criel and MacRae, 2002). The maximum 

Artemia length is usually around 8-10mm for males and 10-12mm for females and their thickness 

approximates 4mm (including the legs) for both sexes (Criel and MacRae, 2002). Decapsulated 

cysts, nauplii and adults are commonly used to feed aquaculture species depending on the mouth 

size of larvae or fry. Artemia present particular feeding characteristics (continuous, nonselective and 

particle-filter feeder) that offer interesting opportunities for its use as live feed in aquaculture 

(Dobbeleir et al., 1980). This animal can ingest small feed particles ranging from 1 to 50μm in size 

(Dobbeleir et al., 1980) such as microalgae (Sorgeloos et al., 1986), baker’s yeast, dried 

microalgae, organic detritus, bacteria and waste products from the food industry (e.g. rice bran, corn 

bran, soybean pellets, whey powder, etcetera) (Dobbeleir et al., 1980; Sorgeloos et al., 1986). The 

peculiar feeding characteristic of the brine shrimp enables its use as a vector for delivering different 

substances to aquatic organisms using the bioencapsulation technique, such as nutrients, pigments 

(Sorgeloos et al., 2001), antimicrobial agents (Dixon et al., 1995), vaccines (Campbell et al., 1993), 

and probionts (Gatesoupe, 1994). 

 
 
3.3. Advantages of using Artemia as test organism 
 

Artemia has been suggested by many authors as a model organism for studying the biology of 

infections, host-microbes interactions or the effect of chemotherapy agents against diseases 

occurring in penaeid shrimp, lobsters and other crustaceans (Overton and Bland, 1981; Criado-

Fornelio et al., 1989; Verschuere et al., 1999, 2000b, Marques et al., 2004). Artemia was also used 

as a model to study regulation of gene expression during embryonic development (Escalante and 

Sastre, 1994). According to Marques et al. (2005), Artemia has several striking biological 

characteristics and advantages, enabling their potential use as model system for basic research in 

animal biology, such as: (i) the possibility to be cultured under axenic and gnotobiotic conditions 
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using various type of feed sources with a simple experimental apparatus (Verschuere et al., 1999, 

2000a,b); (ii) short generation time (2-3 weeks), although under optimal conditions the brine shrimp 

can live for several months, they can grow from nauplius to adult in as little as 8 days (Van 

Stappen, 1996); (iii) availability of large quantities of cysts, different species and strains from all 

continents (and hence different genetic background, Bossier et al., 2004); (iv) small-sized organism 

that can be easily cultured at high density and/or on a small scale, using very simple culture 

systems. 

The success of culturing Artemia partly depends on the establishment of a favourable microbial 

environment. Several pathogens have already been reported in literature, e.g.: Leucothrix mucor 

(Solangi et al., 1979); Vibrio alginolyticus (Soto- Rodriguez et al., 2003a; Villamil et al., 2003); 

Vibrio parahaemolyticus  (Rico-Mora and Voltolina, 1995; Orozco-Medina et al., 2002); Fusarium 

solani (Criado-Fornelio et al., 1989); Vibrio proteolyticus (Verschuere et al., 1999, 2000b); Vibrio 

harveyi or Vibrio campbellii (Roque and Gomez-Gil, 2003; Soto-Rodriguez et al., 2003a,b); and 

Vibrio vulnificus (Soto-Rodriguez et al., 2003a). Contrary to pathogenic or opportunistic bacteria, 

there are some favourable bacteria, which provide many advantages to the host by enhancing its 

survival rates, growth and the overall health condition. Indeed, bacteria may constitute a source of 

essential proteins, amino acids, vitamins and active enzymes (Intriago and Jones, 1993; Gorospe et 

al., 1996) and can provide probiotic effect as well (Verschuere et al., 2000a). 

  

IV. Research objectives and thesis outline 
 
 
Several solutions have been pursued to control diseases in aquaculture. However, results are often 

insufficiently conclusive because the influence of fluctuating culture conditions, especially the 

nature of the occurring microbial community, are not adequately controlled. Therefore, the 

validation of the efficacy of any new strategy requires standardized and controlled conditions.  

The use of gnotobiotic systems is an excellent tool to study a variety of phenomena (Marques et al., 

2006). With such systems it is possible to extend the understanding of the mechanisms involved in 
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host-microbe interactions, evaluate new treatments and design effective and reproducible 

experimental conditions aimed at controlling diseases in aquaculture practices. Eventually, the 

findings can be verified in non-gnotobiotic conditions. 

The general objective of the present study is to investigate the protective nature with respect to 

pathogenic bacteria of isogenic yeast mutants in Artemia. Since various yeast mutants provide 

different cell wall compositions (β-glucans, mannoproteins and chitin), a selection of yeast mutant 

strains was used as protective agents in a gnotobiotic Artemia test system controlling the   

pathogenicity of Vibrio present in the Artemia culture.  

In Chapter I (Introduction) an overview is presented on the general aspects of some 

alternative and/or new methods that are being considered for use in aquaculture to control diseases. 

In addition, some specific characteristics of Artemia are described to elucidate the strong potential 

of this organism as a model organism in aquaculture research. 

Since β-glucans are the most widely-used immunostimulants and immunostimulatory effects 

of yeast cells are mainly attributed to the presence of these compounds in the cell wall, in Chapter 

II (β-glucans as immunostimulant in vertebrates and invertebrates) a special overview is made 

about these products. This chapter summarizes information on the structure and sources of β-

glucans, their mode of action as well as their application in vertebrates and invertebrates. 

In Chapter III (Influence of different yeast cell-wall mutants on performance and 

protection against pathogenic bacteria (Vibrio campbellii) in gnotobiotically-grown Artemia) 

the nutritional and/ or protective properties of yeast cells with respect to Artemia (including a Vibrio 

challenge test) are verified. Therefore, a series of axenic yeast mutant strains with different cell wall 

composition, harvested in the exponential or stationary growth phases are tested. 

A complementary study to the work accomplished in the previous chapter is presented in 

Chapter IV (Anti-infectious potential of beta-mercaptoethanol treated baker’s yeast in 

gnotobiotic Artemia challenge test). Since the external mannoprotein layer of the yeast cell wall is 

supposed to be the main barrier to yeast digestion by Artemia, a chemical treatment using 2-
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mercapto-ethanol (2ME) is applied to a series of yeast mutant strains (the same selection as used in 

chapter III) in order to break disulfide linkages connecting mannoprotein molecules in an attempt to 

improve yeast digestibility resulting in an increased accessibility of β-glucans to Artemia. 

Chemically-treated yeast cells are fed to Artemia and animal performance is evaluated and 

compared with untreated yeast-fed Artemia in a gnotobiotic challenge test system. 

Instigated by studies that reports a beneficial effects of immunostimulants when applied 

either before, simultaneous or even after challenge with a pathogen, Chapter V (The protective 

effect against Vibrio campbellii in Artemia nauplii by pure β-glucan and isogenic yeast cells 

differing in β-glucan and chitin content operated with a source-dependent time lag) reports on 

the verification of the protective nature  of two products (mnn9 yeast cells and/ or pure β-glucan) 

when they are applied to Artemia at different time intervals before or after challenge. 

Making use of the advantages of the gnotobiotic Artemia test system, a collection of putative 

commercial immunostimulants is tested in Chapter VI (Enhanced disease resistance in Artemia 

by application of commercial β-glucans sources and chitin in a gnotobiotic Artemia challenge 

test). 

In Chapter VII (General Discussion and Future Research) the main results obtained in 

the previous chapters and conclusions drawn throughout the thesis are discussed in the framework 

of the research objectives. Additionally, the perspectives for further research are outlined. 
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I. Introduction 
 

A variety of polysaccharides from a variety of sources have the ability to stimulate the immune 

system, so behaving as immunomodulators. Interest in glucans has increased after experiments 

showing that zymosan stimulates macrophages via the activation of the complement system 

(Fitzpatrick and DiCarlo, 1964). Pharmacologically they are classified as biological response 

modifiers (BRM). Different physicochemical parameters, such as solubility, primary structure, 

molecular weight, branching and polymer charge influence the biological activities of β-1,3-glucans 

(Bohn and BeMiller, 1995). The immunomodulating effects of β-glucans are well established 

during the development of immune reactions (Vetvicka and Sima, 2004). Original studies on the 

effects of β-1,3-glucans on the immune system focused on mice (Suzuki et al., 1990; Kournikakis et 

al., 2003). Subsequent studies demonstrated that β-1,3-glucans have strong immunostimulating 

activity in a wide variety of other species, including earthworms (Beschin et al., 1998), shrimps 

(Duvic and Söderhäll, 1990), fish (Anderson, 1992), rats (Feletti et al., 1992), rabbits (Kennedy et 

al., 1995), guinea pigs (Ferencik et al., 1986; Drandarska et al., 2005), sheep (Waller and Colditz, 

1999), pigs (Dritz et al., 1995; Li et al., 1996; Hiss et al., 2003), cattle (Buddle et al., 1988) and 

humans (Kougias et al., 2001). Based on these results it has been concluded that β-1,3-glucans 

represent a type of immunostimulant that is active across the evolutionary spectrum, likely 

representing an evolutionarily conserved innate immune response directed against fungal 

pathogens. Invertebrates have evolved a wide variety of active defense mechanisms enabling them 

to use their highly effective innate defense pathways to protect themselves against invading 

pathogens despite the absence of an adaptive immune system based on lymphocytes or antibodies 

(Vetvika et al., 2004). Fungal β-glucans can induce all of the major anti-microbial immune 

mechanisms found in invertebrates, including the humoral, cellular and phenoloxidase responses 

(Brown and Gordon, 2005). The majority of these responses rely on protease cascades which are 
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initiated by Pahogen Associated Molecular Pattern (PAMP) recognition in the haemolymph (Brown 

and Gordon, 2005). 

In vertebrates, the immunomodulating abilities of β-glucans are thought to stem from their ability to 

activate leukocytes, but there is some confusion about their precise biological effects (Brown and 

Gordon, 2003). This has occurred through the use of different β-glucans which vary in their origin, 

molecular structure and purity, parameters which have been shown to influence their activity (Bohn 

and BeMiller, 1995). A number of cellular receptors have been implicated in these activities, 

including Dectin-1, CR3, lactosylceramide, scavenger receptors and Toll-like receptors 2 and 6 

(TLR) (Brown and Gordon, 2003). When the receptor is engaged by β-glucans, the cells become 

more active in engolfing, killing and digestion of bacteria and at the same time they secrete signal 

molecules (cytokines), which stimulate the attraction and the formation of new white blood cells as 

well as the activation of these cells (Gantner et al., 2003). Although the primary role of β-glucan 

recognition appears to be the initiation of immune responses for the control of fungal pathogens, the 

receptors and mechanisms by which this is achieved differe significantly between vertebrates and 

invertebrates. In vertebrates, the recognition and response to these structures are initiated by cell 

surface receptors, whereas this process occurs primarily in the haemolymph in invertebrates (Brown 

and Gordon, 2005). 

 

2. Structure and sources 

β-1,3-glucans are structurally complex homopolymers of glucose, usually isolated from cell walls 

of bacteria, mushrooms, algae, cereal grains, yeasts and fungi (Zekovic and Kwiatowski, 2005). The 

number of individual β-glucans is almost as great as the number of sources used for isolation 

(Vetvicka and Sima, 2004). Their activity is influenced by their degree of branching, size and their 

molecular ultrastructure. The most active ones have a common structure: a main chain consisting of 

(l-3)-linked β-D-glucopyranosyl units along which are randomly dispersed single β-D-

glucopyranosyl units attached by l-6 or 1-4 linkages (Bohn and BeMiller, 1995; Zekovic and 
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Kwiatowski, 2005). Not only the type and frequency of these branches vary depending on the 

different sources of the β-glucans, but also the length of their main chain (Bohn and BeMiller, 

1995) and their activities (Wagner et al., 1988; Jamas et al., 1991; Kraus & Franz, 1992). Due to 

this variation β-1,3-glucans occur with variable molecular weight (MW) and degree of branching 

(DB) (Williams, 1997). As a result, β-1,3-glucans have specific molecular ultrastructures i.e. triple 

helix, single helix or random coil structures (Ohno et al., 1988a). Data suggest that higher ordered 

structures like triple helices are responsible for the immunomodulating activity (Hamuro et al., 

1971; Norisuye, 1985; Ohno et al., 1987a; Kojima et al., 1986; Maeda et al., 1988). Furthermore β-

glucans with a degree of branching of 0,2 – 0,33 seem to be the most active ones (Bohn and 

BeMiller, 1995) (see Table 2.1). In addition, evidences suggest that the activity of the 

polysaccharides is also dependent on their size, with high molecular weight (100-200 kDa) fractions 

being most active, while fractions from the same source with molecular weights of 5-10 kDa show 

no activity (Blaschek et al., 1992; Fabre et al., 1984; Kojima et al., 1986). Yet, a polysaccharide 

from a Pythium aphaniderma glucan, with a molecular weight between 10-20 kDa has been 

reported to exhibit antitumor activity (Bell et al., 1992; Gomma et al., 1992; Kraus et al., 1992). A 

conclusion for these conflictory data was made by Zhang and coworkers (2005). They demonstrated 

hat samples with a lower MW had higher activity in vitro, while higher MW samples were more 

active in vivo. Other data however indicate that it is the distribution of the glucosyl units along the 

backbone chain that confers immunomodulating activity (Misaki et al., 1993; Williams, 1997). A 

heptasaccharide is the smallest unit ligand recognized by macrophage glucan receptors (Lowe et al., 

2001). Depending on the structure of the β-glucans, they can be divided in three main groups with 

different properties: soluble, gel-forming and particle-forming. In β-1,3-glucans the length of 

unbranched chains of glucose residues has a marked effect on solubility properties. Soluble 

laminarin has a low degree of branching and an average chain length ranging from 7 to 10 glucose 

residues (Fleming et al., 1966). By contrast, the molecules of insoluble laminarin are essentially 

linear and contain about 15-20 residues. The β-1,3-glucans with a high degree of polymerization 
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(DP> 100) are completely insoluble in water (Zeković et al., 2005). The solubility increases as the 

degree of polymerization of β-1,3-glucan is lowered. In fact, the solubility of β-1,3-glucans appears 

to depend both on degree of polymerization and on the length of side substituted branches. The 

frequency of side branches determines the solubility of different β-1,3-glucans (Fleet et al., 1976). 

For laminarin, however, even a single (1→6)-β linked glucose side chain can transform the glucan 

into a more soluble form compared to its unbranched molecule (Nelson and Lewis, 1974). The most 

studied commercial immunomodulating β-1,3-glucans are summarized in Table 1.  
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Table 2.1 Commercially used β-1,3-glucans and their characteristics 

Origin β-glucan Chemical structure 
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MW 
(kDa) 

Solubility References 

 

Krestin (Kureha, 
PSK) 

 

β-1,4-D-glucan-protein-
complex with β-
1,6-
glucopyranosyl 
side chains 

 

1/5 

  

100 

 
Soluble? 

(triple helix) 

 
Ooi and Liu, 2000 

Ohmura et al., 2006 

 

Lentinan β-1,3-D-glucan with β1,6-
glucopyranosyl 
side chains 

2/5  400-800 Gel 

(triple helix) 

Chihara et al., 1969 

Ooi and Fang, 2000 

- Scleroglucan 

- SSG 
β-1,3-D-glucan with β-1,6-

glucopyranosyl 
side chains 

1/3 

Highly 

branched 

 - 1600-5000 

- 200-2000 

Soluble 

(triple helix) 

Palleschi et al., 2005 
Rice et al., 2005 

 

Schizophyllan 

(SPG, sonifilan,  

sizofiran, sizofilan) 

β-1,3-D-glucan with β1,6-
glucopyranosyl 
side chains 

1/3 230 306-450 Gel 

(triple helix) 

Miura et al., 1995 
Bot et al., 2001 

Kubala et al., 2003 

Grifolan (GRN, 
grifolan 
LE) 

β-1,3-D-glucan with β-1,6-
glucopyranosyl 
side chains 

1/3  500 (triple helix + 
singl
e) 

Adachi et al., 1989 
Adachi et al., 1994  

Ishibashi et al., 2001 

 
FUNGI:  
Coriolus versicolor  
 (Turkey tail) 
 
Lentinus edodus 
(Shiitake) 
 
Sclerotium glucanicum 
Sclerotium sclerotiorum 
 
 
Schizophyllum commune 
 
 
Grifola frondosa 
(Maitake) 
 
 
Poria cocos Wolf 
 
 
 
 
Glomerella cingulata 
 
 
Monilinia 
fructigena 

Pachyman β-1,3-linked glucan with a 
small amount of 
β-1,6-linked 
branching glucan 

1,0-1,3 255- 50-270 
80-120 

189 

Insoluble Hattori et al., 1992 
Ding et al., 1999 
Osmond et al., 2001 
Yiannikouris et al., 
2004 

Wang et al., 2004 



Chapter 2  

 27 

 

 

Betafectin (PGG) 

 
PGG (poly-β-1,6-
glucotriosyl- 
β-1,3-glucopyranose-glucan) 

(triple helix) 

 

0,5 
  

150-

 
Soluble 

(non-uniform?) 

 
Onderdonk et al., 1992  
Bohn and BeMiller ,1995 
Kernodle et al., 1998 
Patchen et al., 1998 
Dellinger et al., 1999 

Wakshull et al., 1999 

MacroGard β-1,3-D-glucan with β-1,6-
glucopyranosyl 
side chains 

  200 Soluble (sMG) 
and particle 
(pMG) 

(non-uniform) 

Hetland and Sandven, 2002 

Instanes et al., 2004 

Zymosan β-glucan (β-1,3-linked and β-
1,6-linked glucan 
moieties) and 
mannan, protein, 
and nucleic acid 

0,03-0,2  < 200? Particle 

(non-
uni
for
me
d?) 

Manners et al. ,1973 
Williams et al., 1986 
Young et al., 2003 

Frasnelli et al., 2005 

YEAST: 
Saccharomyces 
cerevisiae 
 
 
 
 
 
 
 
 
 
 
 
 
 
Candida albicans 

Glucan-phosphate Glucan-phosphate (β-1,3-
glucaan-P) 

0,10-0,14  157 

92 

Soluble 

(single helix) 

Müller et al., 1996 
Sherwood et al., 2001 

Rice et al., 2005 
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3. Biochemical background of β-glucan action 

The immunomodulatory activities of β-glucans are still far from being understood, particularly 

those of the intermediate MW glucans, but recent studies have started to shed some light on the 

mechanisms behind the proinflammatory response induced by large MW and particulate β-glucans. 

β-glucans, along with mannans and other cell wall components play an important role in recognition 

of fungal pathogens. Indeed, in vertebrates many of the β-glucan receptors, including CR3, 

lactosylceramide and Dectin-1, have been shown to contribute to the recognition and phagocytosis 

of these organisms (Brown and Gordon, 2003). The action of β-glucans requires target cells, mainly 

myeloid cells, which have an important role in innate as well as adaptive immunity. The effects on 

macrophages for example exist of better phagocytosis, the production of reactive oxygen species 

(ROS), secretion of cytokines and a higher processing and presenting of antigens (Czop, 1986; 

Meira et al., 1996). The direct activation of other immune cells, such as NK cells and lymphocytes, 

can be considered as secondary (Leung et al., 2006). β-glucans are considered as strong mitogens 

inducing proliferation of  peripheral blood mononuclear cells (PBMC). Furthermore they activate 

NK cells, induce T-cell mediated cytotoxicity, release of cytokines such as interferons and 

interleukins and phagocytosis of neutrophils (Bohn and BeMiller, 1995). β-glucans also heighten 

the non-immunological resistance of the host through the stimulation of acute phase proteins 

production. 

What probably contributes to the biological activity of β-glucans is their long presence in 

vertebrates due to the absence of specific β-glucanases (Miura et al., 2003). As a consequence β-

glucans are available in the cells for weeks or even months and only get degraded via slow 

oxidative processes. 

Hence, the action of β-glucans depends also on the dose that is administered and the time point of 

this administration. Too low doses have no effect and too high doses have a suppressive effect. For 

every animal, the optimal dose has to be determined (Vancaeneghem et al., 2000).  
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3.1. β-glucan binding proteins 

The innate ability to detect pathogens is essential for multicellular existence, and has been achieved 

through the evolution of germ-line encoded receptors which can recognize non-self structures, the 

so-called 'pattern recognition receptors' (PRRs) (Janeway, 1992). These receptors evolved to 

recognize conserved products of microbial metabolism produced by microbial pathogens, but not by 

the host. Recognition of these molecular structures allows the immune system to distinguish 

infectious non-self from non-infectious self. The structures recognized by these receptors, termed 

the pathogen-associated molecular patterns (PAMPs), are not found in the metazoa and are thought 

to be normally essential for the survival of the microbial pathogen. The best-known examples of 

PAMPs are bacterial lipopolysaccharide, peptidoglycan, lipoteichoic acids, mannans, bacterial 

DNA, double-stranded RNA and β-glucan of fungi (Medzhitov and Janeway, 2000). Recognition of 

these structures triggers responses designed to protect the host from the invading pathogen, forming 

part of the innate immune system found in all higher organisms (Brown and Gordon, 2003). 

Surprisingly, the recognition of β-glucans by vertebrates differs significantly from that of 

invertebrates. Vertebrate recognition of soluble and insoluble β-glucans appears to occur 

exclusively via a number of cell surface receptors and although complement opsonization does 

contribute to the recognition of particulate glucans, no plasma molecules recognizing this 

carbohydrate structure have been identified (Brown and Gordon, 2005). In contrast, the recognition 

of β-glucans appears to occur primarily in the haemolymph of invertebrates via a number of 

completely unrelated proteins, such as horseshoe crab factor G and gram-negative binding proteins 

(GNBPs). Only one cellular receptor has been shown to recognize β-glucans in invertebrates, the 

Drosophila scavenger receptor (dSRCI). Despite these differences, the recognition of β-glucans in 

both systems results in the triggering of immune responses, designed primarily for the control of 

fungal pathogens. 
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3.2. Vertebrate cell surface receptors for β-glucans 

The evidence for cellular β-glucans receptors originated from the recognition of non-opsonized 

zymosan by human monocytes on a β-glucans dependent way (Brown and Gordon, 2003). Since 

then the β-glucan receptor activity has been identified on immune and non-immune cells, like 

monocytes, macrophages, neutrophils, Langerhans cells, eosinophils, NK cells, endothelial cells 

(Lowe et al., 2002), epithelial cells (Ahren et al., 2001) and fibroblasts (Kougias et al., 2002) 

(Brown and Gordon, 2005). The non-opsonized recognition of β-glucans by these cells is attributed 

to complement receptor 3 (CR3), lactosylceramide receptor, scavenger receptor and dectin-1 

receptor (Ross et al., 1987, Rice et al., 2002, Brown et al., 2003; Gantner et al., 2003) (see Fig. 

2.1).  

 

Fig. 2.1 Overview of the vertebrate β-glucans cell surface receptors. The structures of the scavenger  
receptor type A (SR-A), the complement receptor 3 (CR3), Lactosylceramide, Dectin-1 and Toll-
like receptor 2 (TLR2) are shown and also the effects through activation of these receptors by β-
glucans (Modified from Brown and Gordon, 2005). 
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Cellular recognition is mediated by a combination of these receptors, although only dectin-1 has 

been described to play a role  in a broad outline of the biological response, to these carbohydrates. 

Some leukocyte populations express different receptors in the recognition of β-glucans. The 

mannose binding lectines and also TLR2 and TLR6 have also been described to play a role in the 

recognition of β-glucans (see Fig. 2.1). These TLRs do require more factors to start a response. The 

first receptor mentioned in literature for binding β-glucans was the Membrane associated 

component 1 (Mac-1), also called complement receptor 3 (CR3). This leukocyte-receptor belongs to 

the β2-integrin family and consists of two chains, an αm-chain (CD11b) and a β2-chain (CD18a) 

(Ross et al., 1987; Thornton et al., 1996; Xia et al., 1999). The alfa-chain has two binding sites. The 

first binding site, the I-domain, binds the inactive form of C3b (iC3b), the intercellular adhesion 

molecule (ICAM-1), some extracellular matrix proteins and fibrinogen (Diamond et al., 1993). The 

second binding site, a cation-independent lectin site on CD11b, binds β-glucans (Thornton et al., 

1996; Xia and Ross, 1999). The part of the β-glucans recognised by CR3 is different from species to 

species. For example, in Atlantic salmon, a fragment of 3 consecutive β-1,3-glucose molecules is 

recognised and no β-1,6-linkages (Engstad and Robertson, 1994). In contrast, on human monocytes 

a fragment of seven beta-1,3-glucose molecules is bound (Lowe et al., 2001). CR3 is present on the 

surface of macrophages, NK cells, microglia cells and some lymphocytes (Vancaeneghem et al., 

2000; Brown and Gordon, 2003) . The expression of CR3 is influenced by IFN-γ, IL-1, vitamin D3 

and PGE2. Especially IFN-γ stimulates the expression (Konopski et al., 1993). Moreover it also 

stimulates the uptake of the bound β-glucans, with a negative feedback in case of abundance, and so 

activates the production of TNF-α. IL-1 and vitamin D3 also stimulate the expression of CR3, while 

PGE2 does the opposite (Konopski et al. 1993; Poutsiaka et al, 1993). Leucocytes that don’t have 

CR3 on their surface, still react in a same way to β-glucans, so CR3 is probably not the most 

important β-glucans receptor. 

A second receptor for β-glucans mentioned in literature, is lactosylceramide (LacCer) or CDw17, a 

glycosphingolipid, occurring in the plasma membrane of polymorphonuclear leucocytes and 
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macrophages. Its structure consists of a hydrophobic ceramide lipid and a hydrophilic sugar, 

forming micro domains in the plasma membrane. Monoclonal antibodies to this lactosylceramide 

inhibited the binding of radioactive labelled β-glucans to macrophages (Hahn et al., 2003). Also 

mentioned in the literature as a potential receptor for β-glucans would be a particular, not yet 

identified scavenger receptor. The interaction of monocyte membranes with scavenger-ligands can 

be inhibited by adding soluble β-glucans (Rice et al., 2002). Scavenger receptors include a 

heterogeneous group of molecules which have the possibility to recognise and respond to modified 

lipoproteins of low density, polyanionic ligands, lipoteichoic acid and pathogens (Rice et al., 2002). 

These receptors are expressed on the surface of macrophages, dendritic cells, endothelial cells and 

smooth muscle cells. But the major β-glucans receptor now considered is Dectin-1 (Brown et al., 

2002). This receptor has been discovered by screening the cDNA of a mouse macrophage cell line 

with the β-glucans rich particle zymosan (Brown and Gordon, 2001). A single receptor was isolated 

and the DNA sequence was determined. They found a dendritic cell (DC)-associated C-type lectin, 

also called Dectin-1, belonging to the C-type lectin (CTL) family. CTL receptors belong to the 

bigger family of PRR, recognise conserved PAMP’s and help to make a distinction between self 

and non-self modulated immune responses. CTL are expressed on the surface of a broad spectrum 

of cells, like dendritic cells and other antigen-presenting cells (APC). Many CTL receptors contain 

signalling motifs in their cytoplasmatic domain like an ITAM or ITIM motif, indicative of their 

involvement in activation of cell signaling. Dectin-1 is a type II transmembrane glycoprotein with 

an extracellular C-type lectin-like domain at the COOH-end, a stalk, a transmembrane domain and a 

short cytoplasmatic tail with an ITAM-motif at the NH2-end (Herre et al., 2004). Although dectin-1 

belongs structurally to the CTL family with one carbohydrate recognition domain (CRD)-motif at 

the COOH-end, it does not function as a conventional C-type lectin by his ligand specificity. This 

receptor has been described in mouse, man and cattle and is expressed on the surface of various 

cells, including dendritic cells, macrophages, monocytes, neutrophils, NK cells and a subset of T-

cells (Brown and Gordon, 2001). Dectin-1 is alternatively spliced so different isoforms exist of this 
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receptor, two major isoforms in man, mice and cattle (Willment et al., 2001; Heinsbroek et al., 

2006; Willcocks et al., 2006) and 6 minor isoforms in human (Willment et al., 2001). The major 

isoforms A and B differ in their neck region, which is absent in isoform B. Mouse Dectin-1 is 

located on chromosome 6, expressed by the CLEC7A gene. His size is 28kDa or 244 amino acids or 

735 base pairs (Arizumii et al., 2000; Willment et al., 2001; Herre et al., 2004; Heinsbroek et al., 

2006). The expression of mouse Dectin-1 can be up-regulated by GM-CSF and IL-4 and down 

regulated by IL-10 and LPS (Heinsbroek et al., 2006). Human Dectin-1 (hDectin-1) is structurally 

analogous to mouse Dectin-1, but in contrast more isoforms are formed by alternative splicing. The 

deletions evolved through this alternative splicing are known and lead to a truncated protein, except 

for hDectin-1E (Willment et al., 2001). Splicing seems to be regulated in different cell types, so the 

same isoforms don’t occur in every cell type. HDectin-1A has 247 AA (744 bp) and hDectin-1B 

201 AA (606 bp). The gene CLEC7A is located on chromosome 12 and consists of 6 ORF’s with 6 

exons and 5 introns. Hdectin-1 is also expressed on B-cells and eosinophils in contrast with mouse 

Dectin-1 (Willment et al., 2005). Very recently also the bovine dectin-1 has been fully characterised 

(Willcocks et al, 2006). One demonstrated the existence of two major isoforms A and B where the 

smallest one also lacks the neck region by analogy with man and mouse. Bovine Dectin-1 is located 

on chromosome 5 and encloses 247 AA/ 744 bp (isoform A) or 201 AA/ 606 bp (isoform B). In 

contrast with hDectin-1 bovine T and B lymphocytes seemed to be negative for Dectin-1 and no 

independent regulation of the two isoforms was seen in different cell types (Willcocks et al, 2006). 

Lately researchers have also discovered a role for TLR2 and 6 in β-glucans recognition through 

dectin-1. TLRs include at least 13 membrane signalling molecules, belonging to the PRR. They 

recognize strong conserved sequences on pathogens, so called PAMPs, where after inflammatory 

signals occur (Trinchieri and Sher, 2007). They are integral membrane proteins located on the cell 

surface or in intracellular compartments. They all contain an N-terminal LRR, responsible for 

ligand binding, and a C-terminal TIR domain, necessary for the initiation of intracellular 

signalisation. TLR can form homo- or heterodimers with other TLR or other receptors. As a 
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consequence, their repertoire of ligands increases enormously (Eddie et al, 2005). Evidence 

suggests that, beside Dectin-1, also TLR2 and TLR6 play an important role in the response on 

zymosan. TLR2 reacts directly on this particle, but forms a functional pair with TLR6 to induce the 

production of cytokines and chemokines through MyD88 and NF-κB. However it seems that the β-

glucans receptor Dectin-1 is necessary for the recognition and inflammatory response on these 

carbohydrates. In addition, these receptors strengthen each other’s response. Dectin-1 and TLR2/6 

collaborate and work synergistically (Gantner et al., 2003) (Mukhopadhyay et al., 2004). 

 

3.3. Invertebrate recognition proteins (receptors) 

A number of recognition proteins have been reported in invertebrates such as  GNBPs/ βGRP, Hd-

PGRP, Factor G and SR-CI.  

The Gram-negative binding proteins (GNBPs)/βGRP (β-glucans receptor proteins) are perhaps one 

of the best characterized families of PRRs in invertebrates. These PRRs contain a C-terminal 

domain similar to bacterial β-glucanases, but lack enzymatic activity because of a number of 

amino acid substitution in the active site (Royet, 2004). In most insects, β-glucan recognition is 

mediated by an N-terminal extension of about 100 amino acids, which has also been shown to have 

immunomodulating activity (Fabrick et al., 2004). Most of these proteins are secreted into the 

haemolymph, but at least one may be membrane bound via a GPI-linked anchor (Kim et al., 2000). 

Expression of some of these proteins can be induced upon infection with yeast or bacteria (Jiang et 

al., 2004). Although these proteins have been implicated in a variety of immune responses in 

invertebrates, including the activation of the prophenoloxidase (proPO) cascade and anti-microbial 

peptide production (Ferrandon et al., 2004; Royet, 2004), the mechanism by which binding of β-

glucan triggers these responses is unknown. The members of PGRPs (Peptidoglycan receptor 

proteins) family are primarily involved in the recognition of peptidoglycan, but two plasma PGRPs 
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from Holotrichia diomphalia (Hd-PGRP-1 and Hd-PGRP-2) have been shown to be capable of 

recognizing β-glucan as well. Hd-PGRP-1 is able to induce the prophenoloxidase cascade in the 

presence of β-glucan, suggesting that it may play a direct role in anti-fungal responses (Lee et al., 

2004). Horseshoe crab Factor G is a non-covalently linked heterodimer found in the haemolymph 

which responds specifically to β-glucan. The α subunit, which contains domains similar to 

bacterial glucanases and carbohydrate binding proteins, mediates the recognition of β-glucans, 

while the β subunit is a protease zymogen (Takaki et al., 2002). In response to β-glucan, Factor G 

becomes activated by undergoing autocatalytic proteolysis and initiates activation of the 

proclotting enzyme and the coagulation cascade, leading to haemolymph clot formation (Muta et 

al., 1995). SR-CI is a class C scavenger receptor that was identified and cloned from Drosophila 

haemocytes (Pearson et al., 1995). This receptor was shown to recognize typical scavenger 

receptor ligands, described above, as well as intact Gram-positive and Gram-negative bacteria. 

Although able to recognize the soluble β-glucan, laminarin, the functional significance of this 

interaction is unclear as the receptor does not recognize intact fungal particles (Pearson et al., 

1995; Ramet et al., 2001). 

Proteins binding to the β-glucan have been identified in numerous arthropod species (Vetvicka and 

Sima, 2004). Their activity is usually to stimulate the PPO activation cascade. Subsequent 

purification and identification revealed similar properties: proteins containing carboxyl-terminal 

glucanase-like domain without enzymatic activity. There are suggestions that these proteins might 

develop from a primitive glucanase and later evolve into glucan-binding molecules without any 

enzymatic activity. GBPs (glucan binding proteins), sometimes also named as glucan-receptor, was 

also isolated from plasma of a silkworm, Bombyx mori (Yoshida et al., 1986). Later studies showed 

that these molecules are 30 kDa lipoproteins (Ujita et al., 2002). A different, high-density glucan-

binding lipoprotein has been found in the white shrimp Penaeus vannamei, having only significant 

similarity to the GBP from the crayfish (Romo-Figueroa et al., 2004). Söderhäll’s group isolated 

and characterized a GBP from the crayfish Pacifastatus leniusculus and found that this 40 kDa 



Chapter 2 

 36 

protein has a strong similarity to bacterial glucanases and to the GBPs from Eisenia foetida. This 

protein bound both linear and branched glucans as well (Lee et al., 2000). A detailed study 

evaluated cDNA cloning, purification, properties and functions of a GBP from a moth, Plodia 

interpunctella. Functional data revealed that this GBP bound only to the 1,6-branched glucans (as it 

bound to laminarin, but not to curdlan). Hence, this GBP has two binding domains separated by a 

putative linker region, one for glucan and the second for the stimulation of the PPO cascade 

(Fabrick et al., 2004). GBPs are commonly found in crustaceans. They usually have a size of 

approximately 100 kDa and besides binding glucan, bacteria and haemocytes; they have a strong 

ability to act as opsonins (Cerenius et al., 1994). 

The recently identified receptor of the toll family appear to have a major role in the induction of 

immune and inflammatory responses (Medzhitov et al., 2000). The first receptor of the toll family 

was identified in Drosophila as a component of a signaling pathway. In Drosophila activation of 

toll receptor by microbial infection triggers the rapid up-regulation of a variety of peptides with 

antimicrobial activity (Hoffmann et al., 1999). Homologues of Drosophila toll have been identified 

in mammals and are referred to as toll-like receptors (TLRs) (Medzhitov et al. 1997; Rock et al., 

1998). The presence of TLRs in fish has also been shown (Stafford et al., 2003). These finding 

suggested that TLRs may function as receptors of the innate immune system (Medzhitov et al., 

1997). 

 

4. Immune activation pathways 

Innate immunity plays a very important role in combating microbial infection in all animals. The 

innate immune response is activated by receptors that recognize surface determinants conserved 

among microbes but absent in the host, such as lipopolysaccharides, peptidoglycans and mannans 

(Medzhitov and Janeway, 1997). Upon recognition, these receptors activate multiple and complex 

signalling cascades that ultimately regulate the transcription of target genes encoding effector 

molecules. Importantly, different pathogens elicit specific transcription programmes that can now 
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be investigated by using microarray technology (De Gregorio et al., 2001; Huang et al., 2001; 

Irving et al., 2001). 

 

4.1. Immune activation pathway in vertebrates 

Although the mechanism of action of β-glucans in vertebrates has not been completely elucidated 

yet, it is known that binding of β-glucans to a pattern recognition receptor is crucial for its activity. 

β-glucans receptors described in vertebrates are the CR3, lactosylceramide, scavenger receptor, 

Dectin-1 and TLR2. 

CR3 functions as a phagocytic receptor for a broad range of opsonized and non-opsonized 

pathogens, including iC3b-opsonised particulate β-glucans. When the β-glucans binds to the lectin 

domain of CR3, a conformational change develops via a tyrosine kinase- and magnesium-dependent 

mechanism, thereby exposing an epitope and so activating (‘priming’) the receptor (Ross et al., 

1999). This activation leads to phagocytosis and the production of O2-radicals and cytokines. 

Although the β-glucans binding site of CR3 has a broad range of sugar specificity, only the 

interaction with β-glucans will lead to activation (Xia and Ross, 1999). Since soluble and 

particulate β-glucans show a different activity, one suggests that these glucans might activate 

different signalling pathways. Soluble β-glucans would activate the same pathway as LPS, while 

particulate β-glucans would activate a different, still unknown pathway (Vancaeneghem et al., 

2000). 

The group of Hahn et al. (2006) suggests that binding of β-glucans to another receptor, 

lactosylceramide can induce the macrophage inflammatory protein (MIP)-2 in rat alveolar epithelial 

cells. Moreover, activation of NF-κB through this receptor would lead to an enhancement of the 

oxidative burst of human neutrophils (Zimmerman et al., 1998). Although the exact mechanisms of 

lactosylceramide are not known yet, a possible role of Lyn kinase has been mentioned. 
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A third group of receptors, the scavenger receptors (SRs) are involved in the homeostasis as well as 

immunity. Although a β-glucans specific scavenger receptor hasn’t been identified, a few studies 

have demonstrated that soluble β-glucans can act as ligands for class A SRs. Vereschagin and 

coworkers (1998) demonstrated a protection against endotoxic shock when glucans bound to SRs 

on macrophages. The interaction between β-glucans and SRs is complex and is influenced by 

charge (Rice et al., 2002). 

The fourth and major β-glucans receptor Dectin-1 recognises soluble and particulate β-1,3/1,6-

glucans, intact fungi and yeasts, and an undefined ligand on T-lymphocytes. Two amino acids, 

Trp221 and His223 in the carbohydrate recognition domain (CRD) are determined as necessary for the 

β-glucans interaction, although the exact mechanism of carbohydrate recognition by the non-

classical C-type lectin-like domain is still unclear (Adachi et al., 2004). Dectin-1 plays a significant 

role in the non-opsonized recognition, in contrast with MR and CR3, and has thus a central role in 

the innate recognition of these carbohydrate polymers and could be a potential therapeutically target 

for the development of new medicines (Brown and Gordon, 2005). Immediately after binding his 

ligand, Dectin-1 will phagocytose and endocytose this ligand and a signal cascade starts in the 

cytoplasm through the cytoplasmatic ITAM-motif but independently from the syk kinase (Brown 

and Gordon, 2005). Nevertheless, the ITAM-motif of Dectin-1 is not perfect. The consensus motif 

does contain two repeats of YXXL/I, but the distal repeat lacks the L/I. Still, tyrosine 

phosphorylation of this motif is necessary. This cascade results in the production of cytokines and 

chemokines such as TNF-α, CXCL-2, IL-2, IL_10 and IL_12 and reactive oxygen species. Herre 

and coworkers (2004) reported that syk kinase isn’t strictly necessary for phagocytosis via Dectin-1, 

in spite of the presence of an ITAM-like motif. However, this syk kinase is required for the 

antimicrobial oxidative reaction through Dectin-1 (Underhill et al., 2005) and partially for cytokine 

production. The caspase-recruitment domain CARD9 plays a role in the linking activation of 

Dectin-1-syk to activation of NF-κB and in cytokine production in BM-DCs (Gross et al., 2006). 

Underhill and coworkers (2005) found that there is only a fraction of cells establishing this syk 
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signalisation. This fraction can be manipulated through cytokines which play a role in the 

maturation of the immune response. Dectin-1 also recognises an unidentified ligand on CD4+ and 

CD8+ T lymphocytes and is able to stimulate their proliferation (Willcocks et al., 2006). The 

production of TNF-α through Dectin-1B is significantly higher than through isoform A. It seems 

that isoforms can influence the cytokine production (Heinsbroeck et al., 2006). The mechanism is 

not known. Maybe the lack of a neck region establishes different interactions with other molecules? 

No knowledge exists of the function of the minor isoforms of hDectin-1 (Xie et al., 2006), except 

for isoform E. Very recently, the function of this minor isoform was discovered. HDectin-1E 

contains a complete C-type lectin-like domain and an ITAM-like sequence, but lacks a part of the 

putative cytoplasmatic domain, the transmembrane region and the stalk. It is not expressed on the 

cell surface, because it lacks the transmembrane region. Instead it is soluble and remains in the 

cytoplasm. A Ran-binding protein (RanBPM) has been identified to colocalize with this isoform in 

the cytoplasm. This RanBPM can act as a ‘scaffold’ protein, coordinating signal inputs derived 

from receptors on the cell surface with intracellular signal pathways (Xie et al., 2006). As 

mentioned before, Dectin-1 has also been identified as an important partner for TLR2 on 

macrophages and dendritic cells for the production of inflammatory cytokines in response to certain 

stimuli like β-glucans (Gantner et al., 2003). TLRs do not recognize β-glucans on their own, but 

need Dectin-1 for this. All TLR use the adaptor protein MyD88 in their signalisation. When this 

protein is associated with the receptor, it recruits a family of IL-1 receptor associated kinases 

(IRAK), which take care of the phosphorylation and activation of TRAF-6. Further activation of 

kinases in this cascade leads to the release of NF-κB which will be tranlocated to the nucleus and 

subsequently mediates an elevated expression of inflammatory cytokines such as TNF-α, IL-6 and 

IL-12 (Yadav and Schorey, 2006). Signals from both TLR2 and Dectin-1 are required for the 

activation of NF-κB and the production of these cytokines. The generation of this response occurs 

on the cell surface and needs an intact ITAM motif of Dectin-1 as well. Dectin-1 ligation to TLR2 

leads to phosphorylation of the ITAM-like signalling motif with subsequent signals which generate 
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phagocytosis and activation of NADPH oxidase, resulting in microbial killing (Yadav and Schorey, 

2006). This collaboration between Dectin-1 and TLR2 provides a useful model for clearing the 

interaction mechanisms between many innate immunoreceptors involved in microbial recognition. 

Human DC-SIGN and his murine homologue SIGNR1 are members of the same family as Dectin-1 

(Parent et al., 2002). This protein can bind zymosan as well as the yeast C. albicans (Taylor et al., 

2004). SIGNR1 on itself has weak phagocytotic properties, so receptors like Dectin-1 are required 

for this process.  

4.2. Immune activation pathway in invertebrates 

Fungal β-glucans can induce all of the major anti-microbial immune mechanisms found in 

invertebrates, including the humoral, cellular and phenoloxidase responses (see Fig. 2.2). The 

majority of these responses rely on protease cascades which are initiated by PAMP recognition in 

the haemolymph. In most cases, the components of these cascades and the mechanism by which 

they are activated by the appropriate PRR is unknown. Activation of these cascades triggers 

responses either in the haemolymph, such as coagulation, or in immunocompetent cells, such as 

anti-microbial peptide secretion. 

The recognition of β-glucans can also lead to phagocytosis by certain haemocytes (Brennan and 

Anderson, 2004). Many of these mechanisms have been studied in Drosophila (Brennan and 

Anderson, 2004), but a great deal of information, especially regarding β-glucan recognition, has 

also been obtained through more classical approaches in other organisms, including Anopheles sp., 

Maduca sexta and Bombyx mori. 

β-glucans have been shown to induce at least two types of humoral responses in invertebrates, 

coagulation and anti-microbial peptide secretion. Although less well described in insects, the 

coagulation cascade in response to PAMPs has been defined in other arthropods, particularly the 

horseshoe crab, and is thought to function in wound healing and to restrict the movement of 

microbes (Theopold et al., 2002; Muta and Iwanaga, 1996).  
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Fig. 2.2  β-glucan induced responses and protease cascades in invertebrates. The β-glucan receptors are 

highlited in grey. (PA, phenoloxidase activating enzyme) (modified from Brown and Gordon, 
2005). 
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β-glucans in particular, are recognized by PRR, such as Factor G, which induces a series of 

sequential proteolysis events culminating in the coagulation of clottable proteins, such as coagulin. 

(The components of this cascade, which are released by haemocytes, are strictly regulated by 

protease inhibitors, such as serpins, and may be influenced by the phenoloxidase system (Muta and 

Iwanaga, 1996; Li et al., 2002). Subsequent studies have revealed that, in contrast to the vertebrate 

receptors, invertebrate Toll receptors do not directly recognize PAMPs, but are rather part of the 

signalling pathway resulting in gene transcription and anti-microbial peptide production in the fat 

body (Hoffmann, 2003; Ferrandon et al., 2004). The PRRs involved in sensing and triggering these 

pathways have only recently been identified, but many of the intermediate components remain 

unknown. Although the PRR(s) involved in β-glucan recognition via the Toll pathway have not 

been formally identified, they are likely to be members of the β-glucan recognition protein (βGRP) 

family (Ferrandon et al., 2004). Recognition results in the production of peptides with anti-fungal 

activity, including Drosomycin, and may also trigger cellular responses (Hultmark, 2003). β-

glucans recognition may also trigger the second, imd/relish, anti-microbial pathway, probably 

through recognition by membrane bound peptidoglycan recognition proteins (PGRPs) (Hedengren 

et al., 1999; Hultmark, 2003). 

To combat microbial infection, Drosophila activates multiple cellular and humoral responses 

including, for example, proteolytic cascades that lead to haemolymph coagulation and 

melanization, the production of several effector molecules such as antimicrobial peptides (AMPs) 

and the uptake of microorganisms by haemocytes (Tzou et al., 2002a). AMPs are made in the fat 

body, a functional equivalent of mammalian liver, and are secreted in the haemolymph, where they 

directly kill invading microorganisms (Hoffmann and Reichhart, 2002). Genetic analyses have 

shown that AMP genes are regulated by the Toll and Imd pathways (Hoffmann and Reichhart, 

2002; Tzou et al., 2002a). 
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Upon infection, the Toll pathway is activated in the haemolymph by an uncharacterized serine 

protease cascade that involves the serpin Necrotic and leads to the processing of Spaetzle, the 

putative Toll ligand. Binding of Spaetzle to Toll activates an intracellular signalling cascade, 

involving the adaptor proteins dMyD88 and Tube, and the kinase Pelle, that leads to degradation of 

the I -B-like protein Cactus and the nuclear translocation of the NF- B-like transcription factors Dif 

and Dorsal (Hoffmann and Reichhart, 2002; Tzou et al., 2002a). 

An extracellular recognition factor, peptidoglycan recognition protein (PGRP)-SA, belonging to a 

large family of proteins that bind to peptidoglycan has been implicated in the activation of the Toll 

pathway in response to Gram-positive bacteria but not fungi (β-glucans) (Michel et al., 2001). 

These data support the idea that the Toll pathway is activated by soluble recognition molecules that 

trigger distinct proteolytic cascades converging to Spaetzle. Recently, several studies have led to 

the genetic and molecular identification of seven components of the Imd pathway (Hoffmann and 

Reichhart, 2002; Tzou et al., 2002a). The ultimate target of the Imd pathway is Relish, a rel/NF- B 

transactivator related to mammalian P105. Current models suggest that this protein needs to be 

processed in order to translocate to the nucleus. Its cleavage is dependent on both the caspase Dredd 

and the fly I B−kinase (IKK) complex. Epistatic experiments suggest that dTAK1, a MAPKKK, 

functions upstream of the IKK complex and downstream of Imd, a protein with a death domain 

similar to that of mammalian receptor-interacting protein (Hoffmann and Reichhart, 2002; Tzou et 

al., 2002a). Recently, three independent studies have shown that a putative transmembrane protein, 

PGRP-LC acts upstream of Imd and probably functions in sensing microbial infection (Choe et al., 

2002; Gottar et al., 2002; Rämet et al., 2002b). 

Detailed knowledge about the role of PO (phenoloxidase) in invertebrate immunity is available for 

arthropods, notably insects and crustaceans. This availability is due to a long tradition of 

biochemical and more recent molecular studies of the proPO system in Bombyx mori, Pacifastacus 

leniusculus, Holotrichia diomphalia, and Manduca sexta (Cerenius and Söderhäll, 2004). Cellular 
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studies have been carried out in crustaceans, and several proteins that, in conjunction with the 

proPO system, are involved in encapsulation, phagocytosis, and cytotoxic reactions have been 

characterized. More recently, data have been gathered in non-arthropod systems, such as annelids 

(Bilej et al., 2001), regarding proPO activation in conjunction with the presence of microbial 

products. It is well known that pathogenic microbial infections in insects and other invertebrates 

trigger the activation of the proPO system (Ashida and Brey, 1998). Several groups have 

determined the biological functions of proPO-activating factors and proPOs, suggesting that the 

proPO system is activated by a serine protease cascade and activated PO can synthesize melanin 

pigments for inhibiting spread of a microbial infection or for wound healing (Gillespie et al., 1997; 

Ashida and Brey, 1998). However, a continuous activation of the proPO cascade, which could be 

harmful for the host organisms, might be well regulated by pattern recognition receptors, serpins, or 

proPO-activating factors. The early events of the proPO system consist of two parts; one is the 

recognition reaction between invading pathogens and pattern recognition proteins. The other is the 

signal transfer to the lower parts of the proPO system that a microbial invader is present in 

haemolymph. The biochemical link between the upstream and downstream parts of the proPO 

system is still unknown. It was reported that the 1,3-β-D-glucan pattern recognition protein is 

degraded by a serine protease(s) after recognition of non-self pathogens and after transfer of 

invasion signal to the downstream part of the proPO system (Ashida and Brey, 1998). Moreover, 

some PRR recognizing PGN (peptidoglycan) can also function to recognize β-1,3-glucan and 

induce the PPO cascade (Lee et al., 2004). In a preliminary study, the β-1,3-glucans isolated from 

yeast cell walls exhibited a significant stimulation of the PPO system activity in haemocytes in vitro 

and in haemolymph in vivo of black tiger shrimp, Penaeus monodon (Suphantharika et al., 2003). 

 
Proliferation of cells involved in immune reactions in invertebrates 

The hematopoietic tissue (hpt) has been detected and its morphology studied in several 

crustaceans, but the mechanisms behind the release of haemocytes into circulation in most 
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invertebrates are still unknown. Hpt is believed to contain precursor cells of the different 

haemocyte types. In crustaceans such as crayfish, the sheet-like hpt is located dorsally on the 

stomach and is particularly abundant in the hollow between cardiac and pyloric stomach. The hpt 

comprises small lobules containing differentiating and maturing haemocytes, is surrounded by a 

thin sheath of collagenous connective tissue and is in close contact with the haemolymph sinuses 

(reviewed in Johansson et al., 2000). The hpt has different cell types based on their morphology. 

Hence, in crayfish P. leniusculus, hpt has at least five different types of cells which might 

correspond to developmental stages of granolucytes (GCs) and semi-granolucytes (SGCs). Type 1 

was considered the least differentiated precursor cell while Types 2, 3 and 4 were speculated to be 

different stages of GCs development due to the presence of granules. Type 5, cells differ to Types 

2–4 and was suggested to be a precursor of SGCs. According to Van de Braak et al. (2002), the 

SG cells of at least the large-granular cell line migrate and mature in the connective tissue. The 

connective tissue provides a reservoir of these G cells which can be easily mobilised at times of 

stress. The function of this redistribution of haemocytes may be interpreted in terms of enhancing 

the effectiveness of the internal defence system; when necessary, the animal is able to mobilise 

directly functionally active G cells. Moreover, some cells in the lobules of hpt show similar 

morphology with the circulating haemocytes. This suggests that the haemocytes are mature when 

they are released to the circulation (Chaga et al., 1995). Similar cell types have been described in 

the hpt of lobster, Homarus americanus (Martin et al., 1993), blue crab, Carcinus sapidus 

(Johnson, 1984) and shrimp, ridgeback prawn, Sicyonia ingentis (Hose et al., 1992) and black 

tiger shrimp, Peneus monodon (Van de Braak et al., 2002) although different synonyms were 

named for the different cell types. It is very likely there are no, or very few, haemocytes dividing 

after entering the circulation (Gargioni and Barracco, 1998; Sequeira et al., 1996). The number of 

haemocytes in the circulating system, thus, is regulated by the hematopoiesis in hpt or by storage 

at other site. The circulating haemocytes of invertebrates are essential in immunity, performing 

functions such as phagocytosis, encapsulation and lysis of foreign cells (Söderhäll and Cerenius, 
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1998). The number of free haemocytes can vary and decrease dramatically during an infection 

(Söderhäll  and Söderhäll , 2001). Thus new haemocytes need to be produced and released from 

hematopoietic tissues. Homeostasis seems to operate to restore haemocyte number in the 

haemolymph circulation of decapods (Smith and Söderhäll 1983, 1984; Lorenzon et al. 1999; 

Smith and Ratcliffe 1980). The mechanisms underlying the restoration of the haemocyte pool in 

crustaceans is not fully understood, but it is generally thought to entail either mobilisation of 

haemocytes from reservoirs in haemal crypts or upregulation of cell division in the haemopoietic 

tissue and proliferation within the haemolymph (Ghiretti-Magaldi et al., 1977; Hose et al., 1992). 

Hematopoiesis is the process by which haemocytes mature and subsequently enter the circulation. 

The formation and development of mature haemocytes involve proliferation, commitment and 

differentiation from undifferentiated hematopoietic cells. In fact, hematopoiesis provides a 

mechanism by which haemocytes that have expired or are damaged can be replaced by newly 

synthesized cells (Barreda and Belosevic, 2001; Medwinsky and Dzierzak, 1999). Haemocytes 

are constantly produced, although the rate by which this process occurs can be altered rapidly 

under the influence of different micro-environmental factors (Jiravanichpaisal et al., 2006). 

The hematopoietic process by which stem cells differentiate to produce erythroid, myeloid and 

lymphoid lineages has been widely studied in several vertebrate species, whereas equivalent 

processes in invertebrates are largely unknown (Söderhäll and Söderhäll, 2001). 

In mammals, various types of blood cells have specific functions that are crucial for the survival 

of an individual, such as oxygen transport and defence against infection. In invertebrates, the most 

important role of the circulating haemocyte is the protection of the animal against invading 

microorganisms by participating in recognition, phagocytosis, melanization and cytotoxicity 

(Cerenius and Söderhäll, 2004; Tzou et al., 2002). In Decapod crustaceans cellular immune 

reactions involve three types of circulating haemocytes; the hyaline cell (HC), the semi granular 

cell (SGC) and the granular cell (GC), which can be distinguished by their distinct appearance 
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(reviewed in Johansson et al., 2000), although some synonymous haemocyte terms have been 

reported by others. This classification was mostly based on morphology. 

In crayfish, a fungal infection can be mimicked by injection with a β-1,3-glucan such as 

laminarin, which will induce a rapid drop in haemocyte number followed by a recovery after 24–

48 hours (Söderhäll et al., 2003). The hpt of crayfish was found to be actively proliferating. 

Injection of β-1,3-glucan caused a severe loss of haemocytes resulting in an accelerated 

maturation of haemocyte precursors in the hpt followed by release into the circulation of new 

cells, which developed into functional SGCs and GCs expressing the proPO transcript. The loss 

of circulating haemocytes after β-1,3-glucan injection is probably due to cell aggregation inside 

the animal, indicating an important role of the haemocytes in defence. It was shown that in 

Fusarium-infected shrimp the rate of proliferating haemocytes significantly increased. In fact, 

haemocyte production seems to be required in fungal infection since the melanized lesions, which 

are characteristic of this Fusarium contamination, involve haemocyte waste (Persson 1987, 

Thomqvist, 1993). Therefore, fungal infection not only affects hemocytic behaviour as earlier 

described for freshwater crayfish (Persson 1987; Thomqvist, 1993), but also haemocyte 

proliferation and perhaps haemocyte synthesis or metabolism are affected. 

According to a general agreement, circulating haemocytes of most crustaceans do not divide  

(Söderhäll  and Cerenius, 1992) and, therefore, it was suggested that old cells must be 

continuously replenished by cells released into the haemolymph. However, in Penaeus japonicus 

0·6% of the circulating haemocytes were in a proliferation stage and this increased to 3% after 

LPS injection or Fusarium infection (Sequeira et al., 1996). These results demonstrate that the 

shrimp circulating haemocytes normally scarcely divide, but that proliferation increases after 

stimulation. It is speculated that it is mainly the younger cells, which are mature in the hpt, that 

still have the capability to proliferate. 
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An efficient immune system depends upon the interaction of many cellular and humoral 

components which develop at different rates during fetal and early postnatal life. Mostly the cells 

involved in the immune response are derived from hpt and are thought to differentiate into the 

various cell lineages under the influence of different micro environmental factors.  

Transcription factors are key elements in lineage determination during haemocytes formation and 

several factors are conserved in Drosophila (Denk et al., 2000; Fossett and Schultz, 2001; 

Lebestky et al., 2000) and mammals (Busslinger et al., 2000; Cumano and Godin, 2001). 

Recently, four genes; serpent (srp), lozenge (lz), U-shaped (Ush) and glial cell missing (gcm) 

have been found to be involved in Drosophila hematopoietic lineage commitment (Fossett and 

Schulz, 2001; Lebetsky et al., 2000; Rehorn et al., 1996). These genes, except gcm, have 

similarities to mammalian hematopoietic factors; GATA, Acute Myeloid Leukemia 1 (AML1) or 

Runx and Friend of GATA (FOG), respectively.  

Several transcription factors and signaling pathways have been demonstrated to regulate 

haematopoietic lineage specification in Drosophila (reviewed by Meister, 2004). The GATA 

factor Serpent (Srp) confers haemocyte identity on the precursors in embryos, and probably also 

in the larval lymph gland as it is expressed before all differentiation markers in prohaemocytes. 

Proliferation is regulated by the PVF2/PVR, the Ras/Raf, and the JAK/STAT pathways. Crystal 

cell specification in larvae is under the control of Serrate/Notch pathway and the Runx1 homolog 

Lozeng transcription factor, and antagonized by the friend-of-GATA homolog U-shaped. 

Plasmatocytes are specified by two glial-cells-missing transactivators, and then they will further 

differentiate into pupal macrophages under the influence of the steroid hormone ecdysone. 

Lamellocyte specification probably involves the JAK/STAT pathway.  

A PlRunt gene, encoding a Runt protein, which is involved in hematopoiesis in Drosophila and 

mammals, was upregulated prior to release of haemocytes into the haemolymph circulation. In 

contrast, proPO were expressed in these cells after they were released into the circulation 
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(Söderhäll et al., 2003). Although during the past decades a number of studies of invertebrate 

transcription factors and signaling pathways regulating lineage commitment in hematopoietic 

development have been carried out, little is known about hematopoietic cytokines among 

invertebrates. Recently, it was reported that differentiation and growth of hematopoietic stem cells 

in vitro from crayfish, P. leniusculus, required an endogenous cytokine like-factor named astakine, 

which contains a prokineticin domain (Söderhäll et al., 2005). Discovery of this first invertebrate 

prokineticin-like protein, which is homologous to prokineticins in many vertebrates, involved in 

hematopoiesis may provide interesting information concerning the evolution of growth factors and 

haemolymph development. 

 

5. Application of β-glucans 

5.1. Application of β-glucans in aquaculture 

Diseases are still a major constraint to sustainable aquaculture production, especially for the 

farming of invertebrates (Bachère, 2003). In intensive systems, fish and shellfish species are often 

exposed to stressful conditions, eventually becoming more susceptible to microbial infections, 

especially in their larval stages (Smith et al., 2003). The use of immunostimulants can improve 

innate defence of animals providing resistance to pathogens during periods of high stress, such as 

grading, reproduction, sea transfer and vaccination. Different kinds of substances are known to 

act as immunostimulants but only a few are suitable for use in aquaculture (Raa et al., 1992; 

Siwicki et al., 1998). Immunostimulating effects of glucans have a significant commercial 

potential. Several different types of β-glucan have been successfully used to enhance resistance of 

fish and crustaceans against bacterial and viral infections (Song et al., 1997; Itami et al., 1998; 

Chang et al., 1999, 2000; Cook et al., 2001; Paulsen et al., 2001; Bagni et al., 2005). It has been 

shown that β-glucans may improve health, growth and general performance of many different 
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animal groups, including farmed shrimp, fish and land animals. The immunomodulatory effects of 

glucans are not unequivocal and have been shown to be different in relation to the product source, 

animal species, development stage of the target organism, dose and type of glucan, route and time 

schedule of administration (Guselle et al., 2007) and the association with other 

immunostimulants. 

Many studies have measured the effects of glucan on immunity of fish (see Table 2.2). For 

instance, the in vitro culture of macrophages with glucan has been adopted by some authors 

(Cook et al., 2001; Dalmo and Seljelid, 1995), but more were focused on in vivo studies 

(Robertsen et al., 1990; Aakre et al., 1994; Sahoo and Mukherjee, 2001; Ortuno et al., 2002). 
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Table 2.2 The effects of β-glucans on fish and shrimp  
 

 

AGENT SOURCE AUTHORS FISH ADMINISRATION  RESULTS RESISTANCE TO PATHOGEN 
curdlan Bacteria 

 (Alcaligenes faecalis) 
Lee et al. (2000) Crayfish In vitro PO activity ↑  

glucan  barley  Misra et al. (2006) carp oral SGR ↑ 
FCR ↑ 
Immune parameters ↑ 

Aeromonas hydrophila ↑ 
Edwardsiella tarda ↑ 

glucan mushroom 
(Pleurotus florida) 

Kamilya et al. 
(2006) 

carp in vitro Phagocytosis ↑ 
Bactericidal activity ↑ 
proliferative response ↑ 
NO↑, superoxide anion ↑ 
Hydrogen peroxide ↑ 

 

glucan mushroom 
(Pleurotus florida) 

Kamilya et al. 
(2006) 

carp ip MAF ↑ 
Antibody ↑ 

Aeromonas hydrophila ↑ 
         (adjuvant) 

Lentinan mushroom 
 (Lentinus edodes) 
 

Yano et al. (1991) 
 

carp ip phagocytosis ↑ Edwardsiella tarda ↑ 

Lentinan mushroom 
 (Lentinus edodes) 
 

Figueras et al. 
(1998) 

turbot ip phagocytosis ↑ 
haemolytic plaque ↑ 
agglutinating antibody ↑ 

Vibrio damsela ↑ 
 

Lentinan mushroom 
 (Lentinus edodes) 
 

Nikl et al. (1991) salmon ip • antibody ↑ Aeromonas salmonicida ↑ 
          (adjuvant) 

Chrysolaminaran   Marine diatom 
(Chaetoceros Müleri) 

Skjermo et al. 
(2006) 

Atlantic cod       Oral 
 (via rotifers) 

growth rate ↑ 
Survival ↑ 
 

 

laminaran brown algae 
(Laminaria hyperborean) 

Dalmo et al. (1998) 
 

salmon oral 
• ip 

Survival → 
Survival ↑ 

Vibrio salmonicida → 
Vibrio salmonicida ↑ 

laminaran brown algae (Laminaria 
hyperborean) 

Samuel et al. 
(1996) 

blue gourami 
 

ip phagocytic 
activity ↑ 

Aeromonas hydrophila ↑ 

laminarin algae(Laminari digita) Magnadottir et al. 
(2006) 

Cod larvae Oral immersion Survival → Aeromonas salmonicida → 

laminarin algae (Laminaria digita) Hellio et al. (2007) oyster In vitro PO-like activity ↑  
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Table 2.2 The effects of β-glucans on fish and shrimp  (Continued) 
 
AGENT SOURCE AUTHORS FISH ADMINISRATION RESULTS RESISTANCE TO 

PATHOGEN 
laminarin algae(Laminari digita) Soltanian et al.  

(in press) 
Artemia immersion Survival → V.campbellii → 

glucan yeast  
(Saccharomyces 
cerevisiae) 

Campa-Córdova et 
al. (2002) 

shrimp immersion SOD activity ↑ 
THC ↑ 

V. parahaemolyticus ↑ 

glucan yeast (S. cerevisiae ) Misra et al. (2004) Shrimp 
(Macrobrachium 
roosenbergii) 

immersion lysozyme-like activity ↑ 
ACP ↑ 

V. alginolyticus ↑  

glucan yeast (S. cerevisiae ) Whittington et al. 
(2005) 

tilapia oral 
 

Streptococcus iniae → 
     (adjuvant) 

glucan yeast (S. cerevisiae ) Selvaraj et al. 
(2005) 

carp ip antibody ↑ Aeromonas hydrophila ↑ 

glucan  yeast (S. cerevisiae ) Marques et al. 
(2006) 

Artemia  immersion Survival ↑ V.campbellii ↑ 

glucan yeast (S. cerevisiae ) Kumari and Sahoo 
(2006) 

catfish oral antibody ↑ 
disease resistance ↑ 

Aeromonas hydrophila ↑ 

glucan  yeast  (S. cerevisiae ) Guselle et al. 
(2006) 

trout ip xenoma formation ↓ Loma salmonae ↑ 

Zymosan  yeast  (S. cerevisiae ) 
 

Ching-Yi et al. 
(2005) 

shrimp In vitro PO activity ↑  

Zymosan  yeast  (S. cerevisiae ) 
 

     Zhang et al.  
(2005) 

shrimp injection Hematopoiesis ↑ 
SOD ↑, ALP ↑, ACP ↑, PO ↑ 

 

Zymosan  yeast  (S. cerevisiae ) 
 

Hellio et al. (2007) oyster In vitro PO-like activity ↑ 
 

 

Zymosan  yeast  (S. cerevisiae ) 
 

Soltanian et al. 
 (in press) 

Artemia immersion Survival ↑ V.campbellii ↑ 

Zymosan  yeast  (S. cerevisiae ) 
 

Buggé et al. 
(in press) 

clam In vitro ROS ↑  

MacroGard yeast  (S. cerevisiae ) 
 

Siwicki et al. 
(1994) 

Turbot oral myeloperoxidase activity ↑ 
phagocytosis ↑ 

Aeromonas  
Salmonicida ↑ 

MacroGard yeast  (S. cerevisiae ) 
 

Supamattaya et al. 
(2000) 

shrimp immersion Growth performance ↑ 
Survival ↑ 

 

MacroGard® 
Fibosel® 
VitaStim® 

yeast (S. cerevisiae ) 
yeast (S. cerevisiae ) 
yeast (Schizophyllum 
commune) 

Couso et al. (2003) seabream oral phagocytosis → 
respiratory burst → 
 

Photobacterium damselae↑ 

 



Chapter 2  

 53 

  
 

Table 2.2 The effects of β-glucans on fish and shrimp  (Continued) 
 
AGENT SOURCE AUTHORS FISH ADMINISRATION RESULTS RESISTANCE TO 

PATHOGEN 
MacroGard yeast  (S. cerevisiae ) 

 
Bagni et al. (2005) Sea bass oral complement activity ↑ 

lysozyme ↑ 
 

MacroGard yeast  (S. cerevisiae ) 
 

Palić et al. (2006) Fish (fathead 
minnows) 

In vitro  
oral 

Neutrophil activity ↑  

MacroGard yeast  (S. cerevisiae ) 
 

Soltanian et al. 
(in press) 

Artemia immersion Survival ↑ V.campbellii ↑ 

EcoActiva yeast  (S. cerevisiae ) 
 

Cook et al. (2003) Fish (snapper) oral macrophage 
respiratory burst ↑ 
growth rate ↑ 

 

schizophyllan 
scleroglucan 
lentinan 

S. commune  
S. glucanicum  (yeast) 
L. edodes (mushroom) 

Yano et al. (1989) carp ip phagocytosis ↑ Edwardsiella tarda ↑ 

Schizophyllan 
 
Scleroglucan 

S. commune  
 
Sclerotium glucanicum 

Matsuyama et al. 
(1992) 

Fish (yellowtail) ip Complement ↑ 
Lysozyme ↑ 
Phagocytic index ↑  
 

Streptococcus sp. ↑ 
Pasteurella piscicida → 

Schizophyllan S. commune Itami et al. (1994) 
prawn 

oral phagocytosis ↑ Vibrio sp. ↑ 
 

Schizophyllan S. commune Chang et al. (2000) Penaeus monodon oral phagocytosis ↑  
 

Schizophyllan S. commune Chang et al. (2003) prawn oral PO activity ↑ 
SOD activity ↑ 
O2

− ↑ 

WSSV ↑ 
 

Scleroglucan S. glucanicum Yano et al. (1991) carp ip  Aeromonas hydrophila ↑ 
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Fish recognize β-glucans as foreign agents because of their similarity to fungal or bacterial Gram-

negative polysaccharides. After exposure, the immune system of fish produces an inflammatory 

response, as it would be against a pathogen, which provides effective protection against the 

opportunistic pathogens (Robertsen et al., 1994). Numerous studies have reported that β-glucans 

induce an increase in the resistance of fish to several bacterial pathogens through an increase in the 

levels of complement and lysozyme as well as an enhancement of the phagocytic, respiratory burst 

and bactericidal activities of fish phagocytes (Robertsen et al., 1994; Dalmo et al., 1996; Figueras 

et al., 1998). Different administration routes (oral, immersion, injection) have produced different 

results. β-glucans are usually given by intraperitoneal injection because of efficiency and quickness 

of the method (Robertsen et al., 1990; Chen and Ainsworth, 1992; Matsuyama et al., 1992; 

Jørgensen et al., 1993). The drawback of injection is that it is labor intensive and also stressful to 

fish. Bathing and oral administration are potentially useful alternative methods for mass 

administration to fish of all sizes. However, there is very little information available on bathing and 

oral administration protocols or dosage in farmed fish species. Robertsen and coworkers (1990) 

have also stated that the protection obtained by oral administration may often be relatively low 

compared to injection and the individual variation in response to immunostimulants may be large. 

Furthermore, the degradation and absorption of glucan in the digestive tract after oral 

administration must be taken into account, as this may modify its effect on the immune system 

(Ortuno et al., 2002). 

Some reports suggest that β-glucans enhance the protection of fish against bacterial or protozoan 

infections when administered in the feed (Nikl et al., 1993; Siwicki et al., 1994; Yoshi et al., 1995; 

Efthimou, 1996). However, there are also reports which state that no protection of fish has been 

obtained in such experiments (Toranjo et al., 1995; Baulny et al., 1996). It was reported that long-

term oral administration of peptido-glucans decreased the immune response in rainbow trout when 

challenged with Vibrio anguillarum (Matzuo and Miyazono, 1995), as well as in catfish (Yoshida  

et al., 1995), suggesting a negative feedback effect of β-glucan (Sakai, 1999). Some authors 
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mentioned that a high level of β-1,3-glucan directly induced the respiratory burst, which, after a 

period, can exhaust the immune cells resulting in immunosuppression or feedback regulation (Ai et 

al., 2007; Castro et al., 1999; Robertsen et al., 1994). There is still little information on how long 

the defence mechanism can be immunostimulated. Most studies have only looked at short-term 

protection for 1–2 weeks, which is marked upon administration of immunostimulants such as β-

glucan and chitosan (Anderson and Siwicki 1994). It was reported that multiple injections of β-

glucan (at two-week intervals) might have maintained the activation of phagocytic cells for a longer 

period, which in turn would lead to long-term protection in fishes. Administration of different forms 

of β-glucan in the diet of different shrimp species has also resulted in enhancement of protection 

against various pathogens (Song et al., 1997; Itami et al., 1998; Chang et al., 1999, 2000). This 

increased resistance is in part due to the enhancement of phagocytic activity of haemocytes (Itami et 

al., 1994). During phagocytosis, a series of microbicidal substances including superoxide anions 

(O2
−), hydrogen peroxide (H2O2) hydroxide ions (OH−), singlet oxygen (O2

1), myeloperoxidase 

(MPO) catalysed hypochlorites and various lysosomal enzymes are generated to kill the invading 

pathogen (Segal, 1989).  

 

A relatively small number of reports have addressed the issue of immunostimulation for the larval 

stages although several reports highlight the larval and post-larval stages as those most susceptible 

to disease. Unfortunately, we know very little about the ontogeny and early defence mechanisms of 

the immune system in aquatic invertebrates and fish larvae as in general their small size precludes 

direct study. It cannot be assumed that juveniles exhibit the same responses as adults, or that the 

expression of immune proteins occurs to the same degree. In fact, the impact of immunostimulants 

on the developing immune system of larval fish is not clear. Some researcher maintain that the 

effect is minimal and immunostimulants can be fed to larval fish as soon as the animal can be 

weaned to an artificial diet (Bricknell and Dalmo, 2005). However, it is also believed that 

administering potentially powerful immunomodulating compounds to an animal that has still to 
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undergo major developmental changes in the immune system could result in induction of tolerance 

against immunostimulants. In fish, immunocompetence is achieved some time after the formation of 

the lymphomyeloid organs and appearance of the different leukocyte populations (Lam et al., 2004, 

Huttenhuis, 2005). Fish immunocompetence is determined by the functioning of lymphocytes rather 

than by the histological development of lymphoid organs or the morphological identification of 

lymphoid cells. The exact timing of lymphocyte differentiation varies in different fish species and is 

probably related to the rate of growth which is strongly affected by culture conditions such as 

temperature, salinity and photoperiod, (Falk-Peterson, 2005) and general development. In penaeid 

shrimp the immune capability of larvae was studied during larval development. The expression and 

localization of penaeidin (Litvan-Pen3-1) have been studied in the first larval stages, from Nauplius 

V, Zoea I, II, III, to Mysis II, and in post-larvae (Munoz  et al., 2003). The results showed Litvan-

Pen3-1 transcript and peptides are restricted to some haemocytes observed in the Mysis II larvae 

stage. This suggests either a low level of transcriptional activity in expressing cells, or a low 

number of expressing cells present in the larvae (Munoz et al., 2003). In the marine mussel, Mytilus 

edulis, the levels of phagocytosis in immature larval haemocytes (e.g. in trochophore and veliger 

cells) was much lower (in either percentage of phagocytic cells or mean number of bacteria ingested 

per cell) in respect to adult mussel haemocytes (Munoz et al., 2003).  

Further functional studies are needed to ascertain about maturation of the immune system in 

different species before any efficient vaccination or immunostimulation protocol can be developed 

in order to be able to induce immunization rather than tolerance.  

 

β-glucans are also used as helper substances (adjuvants) for fish bacterial vaccines (Nikl et al., 

1991; Nicoletti et al., 1992; Anderson, 1992; Chen and Ainsworth, 1992; Rørstad et al., 1993; 

Aakre et al., 1994; Raa et al., 1996; Ogier de Baulny et al., 1996; Figueras et al., 1998; Selvaraj et 

al., 2005; Kamilya et al., 2006) (see also Table 2.2). The enhanced efficacy of vaccines after the 

administration of β-glucan is mediated through the modulation of host defences by increasing total 
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leucocytes, differential count (neutrophils, monocytes, lymphocytes, basophils and eosiniphils) 

(Selvaraj et al., 2005) and immune parameters such as bacterial killing activity, phagocytosis 

(Sakai, 1999, Robertsen, 1999), production of anti-microbial mediators including superoxide anion 

(Sakai, 1999 and Robertsen, 1999), interleukin-1β (Selvaraj et al., 2005), complement activity 

(Engstad et al., 1992 and Verlhac et al., 1996), activation of antigen-presenting cells (e.g. 

macrophages) (Raa, 2000) and also activation of lymphocytes (B cells) which produce specific 

antibody i.e in brown trout, eels, catfish and carp (Chen and Ainsworth, 1992; Raa 2002; Selvaraj et 

al., 2005). In fish vaccination, adjuvants are usually administered simultaneously with the vaccine. 

Some authors (Anderson et al., 1989) have demonstrated that if the vaccine is administered after the 

immunostimulant, the immune response is greatly reduced, mainly at high doses. However, the 

group of Figueras et al., (1998) reported the highest activity of all the immune parameters when 

glucans were injected after the bacterin. In another study, the authors (Chen and Ainsworth, 1992) 

reported higher antibody levels when the glucans were administered combined with the antigen and 

were significantly reduced when they were administered before the bacterin. It is concluded that the 

sequence of glucan administration is critical when used as a vaccine adjuvant. 

Application of adjuvanted vaccine is a good strategy as the successful development of new vaccines 

is reliant upon the availability of adjuvants that are not only safe for the host, but also induce 

immune responses complementary to those generated during natural infection (Actor et al. ,  2002). 

 

 5.2. Application of β-glucans in vertebrates 

As mentioned before, β-glucans have been extensively used to improve health, growth and general 

performance in many different animal groups, including shrimp, fish, but also in land animals (see 

Table 2.2 and 2.3) 
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Table 2.3 β-glucans and their application in vertebrates (in vivo and in vitro) 

AGENT SOURCE AUTHORS VERTEBRATE ADMINI 
STRATION RESULTS 

RESISTANCE TO 

PATHOGEN 

AG Algae (Euglena 
gracilis) 

Mohagheghpour 
et al., 1995 

Mice IP Antibody titers, T cell proliferation, IL-2 
production↑ 

 

AG Algae (Euglena 
gracilis) 

Mohagheghpour 
et al., 1995 

Rabbit IP Antibody titers↑  

β-glucan Yeast cell wall 
(soluble) 

Xiao et al., 2004 Pig In vitro Cellular and PRRSV-specfic immune 
response↑ 

PRRSV 

β-glucan Yeast (S. cerevisiae) Li et al., 2005 Pig Oral In vivo ↑ IL-6, TNF-α and IL-10 LPS 
β-glucan  Hahn et al., 2006 Pig Oral Antiboy titers against ag↑, CD4 and CD8 

cells↑  
 

β-glucan  Lowry et al., 
2005 

Chicken Oral Phagocytosis, bacterial killing and 
respiratory burst↑ 

Salmonella enterica 
serovar enteritidis 

β-1,3-glucan Yeast  Engstad et al., 
2002 

Human In vitro IL-8, TF ↑↑, TNF-alpha, IL-6, IL-10 ↑, 
synergistic to LPS, neutrophil 
degranulation 

 

β-1,3-glucan 
WGP 

Yeast  Vetvicka et al., 
2002 

Mice Oral TNF-alpha, IL-1beta↑ Bacillus anthracis 
(Anthrax) 

β-1,3-glucan Yeast  Waller and 
Colditz, 1999 

Sheep Intramammary Monocyt/macrophage number↑  

β-1,3-D-glucan Yeast (Candida 
albicans) 

Yoshida et al., 
1996 

Rabbit IV   

β-1,3-glucan  Persson Waller 
et al., 2003 

Cattle Intramammary MHCII+ lymphocytes↑ Staphylococcus aureus 
 

IV Venezuelan equine 
encephalomyelitis 

β-1,3-glucan 
(insoluble) 

Yeast (S. cerevisiae) Reynolds et al., 
1980 

Mice 

IN 

Adjuvant effect vaccine, host resistance 
against challenge 

Pseudomonas pseudomallei 
β-1,3-glucan 
(insoluble) 

Yeast (S. cerevisiae) Reynolds et al., 
1980 

Rat IV host resistance against challenge Francisella tularensis 

β-1,3-glucan 
(insoluble) 

Yeast (S. cerevisiae) Reynolds et al., 
1980 

Monkey IV VEE antibody titers↑  

β-1,3/1,6-
glucan 

Yeast (S. cerevisiae) Williams and Di 
Luzio, 1979 

Mice IV Leukocyte number, microbicidal activity↑ Staphylococcus aureus 
 

β-1,3/1,6-
glucan 

Yeast (S. cerevisiae) Lee et al., 2002 Human In vitro TNF-alpha↑, stimulates macrophage 
function 

 

β-1,3/1,6-
glucan 

Yeast (S. cerevisiae) Tsukada et al., 
2003 

Mice Oral IEL↑, IFNgamma↑  

β-1,3/1,6-
glucan 

Yeast (S. cerevisiae) Hiss and 
Sauerwein, 2003 

Pig Oral Growth performance↑  

β-1,3/1,6-
glucan 

Yeast ? Guo et al., 2003 Chicken  IL-1, nitrite↑, proliferation mФ ↑, 
lymphocytes↑, lymphoid organs larger 

 

β-1,4-glucan Bacteria (Acetobacter Li et al., 2004 Mice IG Survival rate ↑, CD4+ and CD8+ cells ↑, Listeria monocytogenes
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Glucan-P Yeast (S. cerevisiae) Rice et al., 2005 Mice Oral Systemic IL-12↑ Staphylococcus aureus 
Candida albicans 

Krestin (PSK) Fungus (Coriolus 
versicolor) 

Tochikura et al., 
1987 

Human In 
vitro 

Block cytopathic effect virus HIV 

Krestin (PSK) Fungus (Coriolus 
versicolor) 

Asai et al., 2005 Mice In 
vitro 

IL-6↓, NO production↓ MФ 
Protection against LPS lethality  

 

Krestin (PSK) Fungus (Coriolus 
versicolor) 

Sakagami et al., 
1991 

Mice 
Human 

IV 
In 
vitro 

MФ: NBT reducing↑ 
Human PMN: iodination↑ 
TNF↑ 

 

Laminarin Algae (Laminaria 
digitata) 

Rice et al., 2005 Mice Oral Systemic IL-12↑ Staphylococcus aureus 
Candida albicans 

Lentinan Fungus (Lentinus 
edodus) 

Irinoda et al., 
1992 

Mice IN 
IV 

NO and CL activity↑ alveolar MФ, IL-6 production  Influenza 
 
 

Lentinan Fungus (Lentinus 
edodus) 

Kupfahl et al., 
2006 

Mice In 
vitro 
IV 

TNF-alfa , IFN-gamma and IL-12↑, NO produc-tion 
and cytotoxic, CD8↑ 

Listeria monocytogenes 

MacroGard Yeast (S. cerevisiae) Decuypere et al., 
1998 

Pig Oral 
 

Immunoreaction to vaccination↑  

MacroGard Yeast (S. cerevisiae) Instanes et al., 
2004 

Mice SC Adjuvant effect toward OVA, on allergic responses  

ObG Oat Yun et al., 2003 Mice IG 
IP 

In vitro phagocytosis and proliferation mФ↑ 
Induction specific IgG/IgA 
Cytokine secretion↑ 

Staphylococcus aureus 
Eimeria vermiformis 

PGG Yeast (S. cerevisiae) Wakshull et al., 
1999 

Human In 
vitro 

Oxidative burst, leukocyte microbicidal activity↑  

PGG Yeast (S. cerevisiae) Onderdonk et 
al., 1992 

Rat IV Leucocyte number↑ Escherichia coli, 
Staphylococus aureus 

PGG Yeast (S. cerevisiae) Onderdonk et 
al., 1992 

Mice IV Leucocyte numbe↑ Escherichia coli, 
Staphylococus aureus 

PGG (Betafectin) Yeast (S. cerevisiae) Liang et al., 
1998 

Rat IM Monocyt, neutrophil number↑, oxidative activity↑  Staphylococcus aureus 
 

PGG (Betafectin) Yeast (S. cerevisiae) Kernodle et al., 
1997 

Guinea 
pig 

IV Neutrophil activation 
Dose-effect response wound infection 

Staphylococcus aureus 
Staphyococcus epidermidis 

Scleroglucan Yeast (S. cerevisiae Rice et al., 2005 Mice Oral Systemic IL-12↑ Staphylococcus aureus 
Candida albicans 

SSG Fungus (Sclerotinia 
sclerotiorum) 

Suzuki et al., 
2001 

Mice IP IgG2a, IFN-gamma, IL-12↑  

SSG Fungus (Sclerotinia 
sclerotiorum) 

Hetland et al., 
2000 

Mice IP Protective and curative against pneumococcal 
infection 

Streptococcus pneumoniae 

TLFN, 1,3/1,6-
glucan 

Yeast (S. cerevisiae) Krakowski et al., 
1999 

Horse IM Activity PMN↑ 
Concentration IgG/IgM colostrum↑ 
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One important aspect of the immunobiological activity of β-glucans will be their adjuvant effect. In 

general the immune system reacts with a better and higher response when β-glucans ‘prime’ this 

system. Many studies have pointed out the possibility of β-glucans as an adjuvant in combination 

with viral, bacterial and parasitic vaccines (Hetland et al., 2000; Hrckova and Velebny, 2001; Yun 

et al., 2003; Jung et al., 2004). Glucans raise the humoral (Sakurai et al., 1992) as well as the 

cellular immunity (Xiao et al., 2004) against these antigens. Moreover, glucans have an additional 

or even a synergistic effect on the immunity in combination with a variety of agents (Reynolds et 

al., 1980; Williams et al., 1999; Instanes et al., 2004) and even lead to resistance against viral 

(Irinoda et al., 1992; Xiao et al., 2004), bacterial (Kernodle et al., 1998; Yun et al., 2003; Lowry et 

al., 2005) and parasitic (Yun et al., 2003) pathogens (see table β-glucans and vertebrates). β-1,3-

1,6-glucans also function as an adjuvant for an antitumor monoclonal antibody  by priming CR3 on 

granulocytes (Yan et al., 1999; Cheung et al., 2002; Hong et al., 2004). A discrete dosis related 

effect of β-glucans in the diet has been found on growth performance and resistance against 

infection in pigs. β-glucans can enhance the concentration of the IL-1 receptor antagonist. As a 

consequence the immune system is less activated, which results in a higher feed intake and growth 

performance. However, a resting immune system will lead to a higher sensitivity to challenge (Dritz 

et al., 1995). 

Clinical trials show anti-tumor activity of β-glucans, but only significant in the early stages of the 

cancer (Borchers et al., 1999; Yalin et al., 2005). The survival of these patients was prolonged and 

also their quality of life. The former was probably caused by the higher filtration of T- and B-

lymphocytes and macrophages into the tumour, by prevention of metastasis and by the repair of the 

ratio Th1/Th2. In vitro studies also exerted a direct cytostatic effect on sarcoma and melanoma 

cells from particulate β-glucans (Williams et al., 1985; Okamura et al., 1986, Tsang et al., 2003; 

Nakano et al., 1999; Tari et al., 1994; Yoshino et al., 2000). Alternative anti-tumor applications are 

combination therapies like β-glucans and cyclophosphamide in mice, resulting in the reduction of 

hepatic metastases and a prolonged survival rate. Especially mushroom β-glucans like lentinan, 
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krestin and schizophyllan have been proven to have anti-tumor activities, mostly in combination 

with chemotherapy or surgical removement of the primary tumour (Kimura et al., 2003; Wasser, 

2002). Studies evaluating the molecular weight dependence of antitumor activity have suggested 

that the triple-helix form is the most potent conformer of schizophyllan (SPG). However, other 

studies, using solid state 13C NMR spectroscopy, have suggested that for antitumor activity and the 

production of tumor necrosis factor, nitric oxide and hydrogen peroxide by macrophage, the single-

helix is the potent conformer. 

Uptake of soluble β-glucans improves the lipid pattern of humans and laboratory animals with a 

high cholesterol amount (Robbins and Steeley, 1977). Clinical trials proved this effect on 

hypercholesterolemia with pure β-glucans from yeast and cereals in the diet (Anderson J.W. and 

Bridges S.R., 1993). The more fluid the diet, the more effect was seen from the β-glucans 

(Naumann et al., 2006). In a study of Varady and Jones (2005) the effect of oat products were 

tested on persons with mild hypercholesterolemia. Results show significant reduction in total and 

LDL cholesterol, but no effect on HDL or triglycerides. One possible mechanism mentioned, is the 

induction of a higher viscosity in the intestine and thereby a reduction in the absorption of bile 

salts. In another study, krestin prevented lipoperoxidative damage and atherosclerotic plaques in 

rabbits, fed a high cholesterol diet (Pang, 2003). The prevention of this process of atherosclerosis is 

very important since this creates heart and vascular diseases, considerable causes of death. Some β-

glucans (gel-forming) are used as feed additives to improve the physical properties as thickeners, 

fat replacers, water retaining agents or emulsifying stabilizers. Moreover, β-glucans from oat and 

barley can be used as functional feed ingredients, but more research about their health promoting 

function is necessary for the development of new applications in feed industry (Thammakiti et al., 

2004). When β-glucans are applicated through feed, they can activate the immune system (see 

above), but also have a positive effect on the cholesterol (see above) and on the insulin and glucose 

amount in diabetic patients (Brennan and Cleary, 2005). 
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Few studies have reported that β-glucans can adsorb particular mycotoxins, thereby preventing 

their harmful effect (Devegowda et al., 1998; Dawson et al., 2001; Yiannikouris et al., 2004;). This 

binding is dosis dependent and reversible. In vitro studies have demonstrated this effect with a 

range of toxins and the cell wall of Saccharomyces cerevisiae (Devegowda et al., 1998; 

Yiannikouris et al., 2004).  

Because of all these properties of β-1,3-glucans, several alternative medicines have turned up 

based on these carbohydrates (Brown and Gordon, 2003). Nevertheless, as mentioned above, their 

solubility in aquatic media is a major obstacle for the clinical use of β-glucans as biological 

response modifiers (Bohn and BeMiller, 1995). 

 

Conclusion 

Two different reasons for the studies of β-glucan in invertebrates exist: one is the general progress 

of our knowledge of the basic defense reactions in invertebrates, including phagocytosis, lectins or 

phenoloxidase systems; the other being the ever increasing need to find more environmental-

friendly treatments for invertebrates (in contrast to chemical anti-microbial products) stressed by 

extensive farming and disease outbreak (e.g. crustacean larvae culture). The current evolution in 

feed industry is mainly focused on health promoters, higher feed efficiency and alternatives to 

antibiotics. Beside the prebiotic effects, β-glucans also have immunomodulating activities and may 

therefore come up to all of these properties. So, many studies focus now on the exact mechanism of 

these glucans and also further on their applications. 
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Influence of different yeast cell-wall mutants on performance and protection 

against pathogenic bacteria (Vibrio campbellii) in gnotobiotically-grown Artemia 

 

Abstract 

A selection of isogenic yeast strains (with deletion for genes involved in cell-wall synthesis) was used 

to evaluate their nutritional and pathogen-protective properties for gnotobiotically-grown Artemia. In 

the first set of experiments the nutritional value of isogenic yeast strains (effected in mannoproteins, 

glucan, chitin and cell-wall bound protein synthesis) for gnotobiotically-grown Artemia was studied. 

Yeast cell-wall mutants were always better feed for Artemia than the isogenic wild type mainly 

because they supported a higher survival but not a stronger individual growth. The difference in 

Artemia performance between WT and mutants feeding was reduced when stationary-phase grown 

cells were used. These results suggest that any mutation affecting the yeast cell-wall make-up is 

sufficient to improve the digestibility for Artemia. The second set of experiments, investigates the use 

of a small amount of yeast cells in gnotobiotic Artemia to overcome pathogenicity of Vibrio campbellii 

(VC). Among all yeast cell strains used in this study, only mnn9 yeast (less cell wall-bond 

mannoproteins and more glucan and chitin) seems to completely protect Artemia against the pathogen. 

Incomplete protection against the pathogen was obtained by the gas1 and chs3 mutants, which are 

lacking the gene for respectively a particular cell wall protein and chitin synthesis, resulting in more 

glucan. The result with the chs3 mutant is of particular interest, as its nutritional value for Artemia is 

comparable to the wild type. Hence, only with the chs3 strain, in contrast to the gas1 or mnn9 strains, 

the temporary protection to VC is not concomitant with a better growth performance under 

unchallenged conditions, suggesting non-interference of general nutritional effects.  
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1. Introduction 

Immunomodulation of larval fish has been proposed as a potential method for improving larval 

survival by increasing the innate responses of the developing animals until its adaptive immune 

response is sufficiently developed to increase an effective response to the pathogen (Bricknell and 

Damo, 2005). 

Invertebrates are not equipped with cells that are analogous to antibody producing lymphocytes in 

vertebrates. According to Raa (2000), invertebrates are apparently entirely dependent on non-specific 

immune mechanisms to cope with infections, as they lack the specific immunological “memory” that 

is found in fish and warm-blooded animals. As a result, it does not seem to make sense to vaccinate 

them against a specific diseases .Yet, a recent study in the copepod Macrocyclops albidus showed that 

the defence system of this invertebrate species reacted more efficiently after a previous encounter with 

an antigenically similar parasite, implying that a specific memory may exist (Kurtz and Franz, 2003). 

Furthermore, exposure of shrimp to inactivated Vibrio spp. has been reported to provide some 

protection (Alabi et al., 1999; Itami et al., 1998; Teunissen et al., 1998). The use of specific biological 

compounds (immunostimulants) that enhance immune responses of target organisms, rendering 

animals more resistant to diseases may be an excellent preventive tool against pathogens (Anderson, 

1992). Such substances may reduce the risk of disease outbreaks if administered prior to a situation 

known to result in stress and impaired general performance (e.g. handling stress, change of 

temperature or other environmental parameters, weaning from live to artificial feeds) or prior to an 

expected increase in exposure to pathogenic micro-organisms and parasites (e.g. spring and autumn 

blooms in marine environment, transfer to engrowing systems). 

Several immunostimulants have been used in vertebrate and invertebrate culture, to induce protection 

against a wide range of diseases: i.e. β-glucans (Sung et al., 1996; Sritunyalucksana et al., 1999; 

Burgents et al., 2004; Misra et al., 2004), chitin (Anderson and Siwicki, 1994; Song and Huang, 1999; 

Wang and Chen, 2005), mannoproteins (Tizard et al., 1989), lipopolysaccharides (Takahashi et al., 
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2000), peptidoglycans (Itami et al., 1998; Boonyaratpalin et al., 1995) and dead bacteria (Alabi et al., 

1999; Keith et al., 1992; Vici et al., 2000). 

 Marques et al. (2004a,b) have recently developed and validated the usefulness of an Artemia 

gnotobiotic test system allowing to study the effect of food composition on survival and growth in the 

presence or absence of a pathogen. Baker’s yeast Saccharomyces  cerevisiae, which has been found to 

be a good immune enhancer in some aquatic organism, is an excellent source of β-glucans and chitin. 

These compounds together with mannoproteines constitute the major compounds of the yeast cell-wall 

(Magnelli et al., 2002). The present study aims to identify the critical cell-wall components that induce 

pathogen-protection in Artemia. The effect of isogenic yeast deletion mutants (8 strains), carrying a 

null mutation in a gene involved in cell wall synthesis, was evaluated in a gnotobiotic Artemia test 

system. Firstly, Artemia performance was examined with the null-mutant yeast cells, harvested in 

exponential and/or stationary growth phase. In a second stage, these feed sources were tested in 

combination with a Vibrio campbellii challenge. 

 

2. Methodology 

2.1. Axenic culture of yeast 

To verify the digestibility of live baker’s yeast (S. cerevisiae) by Artemia, 7 different null-mutants of 

yeast (isogenic deletion strains derived from baker’s yeast strain BY 4741) and the wild type strain 

(WT) (genotype described in Table 3.1) were fed to Artemia. All strains were provided by 

EUROSCARF (University of Frankfurt, Germany). 

Yeasts cultures were performed according to procedures previously described by Marques et al. 

(2004a,b), using minimal Yeast Nitrogen Base culture medium (YNB).  

Yeasts were harvested by centrifugation (± 800 × g for 10min), either in the exponential growth phase 

(after 20 h; “exp.yeast”) or in the stationary growth phase (after 3 days;”stat.yeast”). Yeast cell 

concentrations were determined with a Bürker haemocytometer. Yeast suspensions were stored at 4 °C 

until the end of each experiment (maximum storage of one week). 
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• Table 3.1 Genotype of all yeast strains used as feed for Artemia and description of each gene mutation in the development of cell wall components. 
 
 
Strains Genotype Phenotype (cell wall changes) Reference 

 
WT BY 4741; Mat a; his 3 Δ l; leu 2Δ0; control yeast Dallies et al.(1998); Klis et al.(2002);  
 met 15Δ0; ura3 Δ0  Magnelli et al.(2002); Marques et al.(2004)  
 
mnn9 BY4741; Mat a; his 3 Δ l; leu 2Δ0;  less mannan, higher chitin, Klis et al.(2002); Klis et al.(2002);  
 met 15Δ0; ura3 Δ0;YPL050c::kanMX4  higher β- glucans Magnelli et al.(2002); Marques et al.(2004) 
 
 
mnn6 BY4741; Mat a; his 3 Δ l; leu 2Δ0; less phosphomannan Karson and Ballou (1978); Wang et al (1997) 
 met 15Δ0; ura3 Δ0;YPL053c::kanMX4  Jigami and Odani (1999) 
 
 
fks1 BY4741; Mat a; his 3 Δ l; leu 2Δ0; less β1,3-glucans, Dallies et al.(1998); Magnelli et al.(2002);  
 met 15Δ0; ura3 Δ0;YLR342w::kanMX4 higher chitin Martin-Yken et al.(2002); Pagé et al.(2003) 
   Aguillar-Uscana and Francois (2003)  
 
knr4 BY4741; Mat a; his 3 Δ l; leu 2Δ0; less β1,3-glucans, Dallies et al.(1998); Magnelli et al.(2002); 
 met 15Δ0; ura3 Δ0;YGR229c::kanMX4 higher chitin Martin-Yken et al.(2002); Pagé et al.(2003); 
   Aguillar-Uscana and Francois (2003) 
 
kre6 BY4741; Mat a; his 3 Δ l; leu 2Δ0; less β1,6-glucans,  Magnelli et al.(2002);  
 met 15Δ0; ura3 Δ0;YPR159w::kanMX4 higher chitin  Francois(2003) ; Martin-Yken et al.(2002); 
   Pagé et al.(2003) 
 
chs3 BY4741; Mat a; his 3 Δ l; leu 2Δ0; less chitin Valdivieso et al.(2000); Cabib et al.(2001); 
 met 15Δ0; ura3 Δ0;YBR023c::kanMX4  Klis et al.(2002); Magnelli et al.(2002); 
 
 
gas1 BY4741; Mat a; his 3 Δ l; leu 2Δ0; less integration of yeast cell  De Nobel et al.(1994); Popolo et al.(1997) 
 met 15Δ0; ura3 Δ0;YMR307w::kanMX4 adhesion proteins into the cell wall Lipke and Ovalle (1998);  
 less β1,3- glucans, higher chitin  Magnelli et al.(2002) 
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2.2. Bacterial strains and growth conditions 

Two bacterial strains were selected, i.e. Aeromonas hydrophila strain LVS3 (Verschuere et al., 1999, 

2000; Marques et al., 2005) for its positive effect on Artemia performance when fed sub-optimally and 

Vibrio campbellii strain LMG21363 (VC) for its pathogenic effect towards Artemia and shrimp 

(Marques et al., 2005; Soto-Rodriguez et al., 2003; Gomez-Gil et al., 2004). The two bacterial strains 

were cultured and harvested according to procedures previously described by Marques et al. (2005). 

Pure cultures of the two bacterial strains were obtained from the Laboratory of Microbial Ecology and 

Technology, Gent University, and from the Laboratory of Microbiology, Gent University. The 

bacterial strains were stored at –80 °C and grown overnight at 28 °C on marine agar, containing Difco 

TM  marine broth 2216 (37.4 g/l, BD Biosciences) and agar bacteriological grade (20 g/l, ICN). For 

each bacterial srain a single colony was selected from the plate and incubated overnight at 28 °C in 50 

ml Difco TM  marine broth 2216 on a shaker (150 rpm). Stationary-grown bacteria were harvested by 

centrifugation (15 min; ±2200 × g), the supernatant were discarded and the pellet resuspended in 20 ml 

filtered autoclaved sea water (FASW). Bacterial densities were determined by spectrophotometry 

(OD550 ),  assuming that an optical density of 1.000 corresponds to 1.2 × 109 cells/ml, according to 

McFarland standard (Biomerieux, Marcy l’Etoile, France). 

At day 3, challenge tests were performed with live VC. For that purpose, in a laminar flow hood, the 

pathogen was provided to each replicate at a density of 5 × 106  cells/ml. Dead LVS3 was provided to 

Artemia using aliquots of autoclaved concentrated bacteria (autoclaving at 120°C for 20 min). After 

autoclaving, bacteria were plated to check if they were effectively killed by this method. For this 

purpose, 100µl of the culture medium were transferred to marine agar (MA; n=3), containing DifcoTM 

marine broth 2216 (BD Biosciences, 3.74% w/v) and agar bacteriological grade (ICN, 2% w/v). 

Absence of bacterial growth was monitored after incubating plates for 5 days at 28°C. Autoclaving 

treatment was 100% effective, since no bacterial growth was observed on the MA after 5 days of 

incubation. Dead and live bacterial suspensions were stored at 4°C until the end of each experiment. 
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2.3. Yeast and bacterial ash-free content  

To determine the yeast and bacterial ash free dry weight (AFDW), 50 ml of each culture sample were 

filtered on pre-dried filters (pore size 0.45 µm, two replicate per culture). Filters were subsequently 

dried at 60 °C for 24 h and weighed. Afterwards they were combusted at 600°C for 6 h to determine 

the ash content. The AFDW was calculated as the difference between dry weight and ash weight. The 

DW and AFDW of control (filter only, n=2) were subtracted from all samples. The AFDW of the yeast 

strains and the bacteria is presented in Table 3.2.  
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Table 3.2 Average ash free dry weight (AFDW) of 7 different null-mutants of yeast (isogenic strains 

derived from BY 4741) and the wild type strain (WT) harvested in the exponential and 

stationary growth phase, together with AFDW of dead LVS3 and live VC bacteria 

expressed in mg/109 cells. Values of AFDW are presented with the respective standard 

deviation (mean±S.D.). Values in the same column showing the same superscript letter are 

not significantly different (pTukey>0.05).  p-values obtained for direct comparison of AFDW 

(mg/Falcon tube) of different  yeast cell strains, harvested in exponential and stationary 

growth phase were included. Significant differences were obtained when p<Tukey0.05.  

 
  
Strains                   AFDW (mg/109 cells)                    AFDW (mg/Falcon tube)                                    p-value     
                   Exponential            Stationary         Exponential          Stationary            Exponential vs stationary phase 
                          phase                      phase                   phase                    phase                        AFDW (mg/Falcon tube) 
  
WT                15.24±0.18f           13.69±0.07d           1.60±0.02e                  1.44±0.01de                                                0.014 
 
mnn9             54.67±1.66a          36.40±7.23a            5.74±0.17a                  3.82±0.75a                                                 0.161 
 
mnn6             17.09±0.37e          11.83±0.10de           1.79±0.04d                 1.24±0.01e                                                  0.013 
 
fks1               18.90±1.41d          17.73±0.28c            1. 98±0.13d                1.86±0.0cd                                                  0.644 
 
knr4               14.77±0.26f          13.17±0.13d            1.55±0.03e                 1.38±0.10de                                               0.037 
 
kre6               34.54±1.41b          24.52±1.25b           3.63±0.28b                 2.57±0.13b                                                 0.076 
 
chs3              16.4±0.12e             11.0±0.40e             1.72±0.01d                1.15±0.04 e                                                  0.020  
                                                                                                            
gas1              29.09±0.86c           20.30±2.60bc          3.05±0.09c               2.13±0.28bc                                                 0.1 
 
live LVS3             -                     0.2186±0.02f               -                     0.023±0.01f                                    -       
 
dead LVS3           -                     0.2725±0.02f                 -                    0.029±0.01f                                    - 
 
live VC                 -                     0.1134±0.01f               -                     0.034±0.01f                                    -  
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2.4. Artemia gnotobiotic culture  

Experiments were performed with Artemia franciscana cysts, originating from Great Salt Lake, Utah- 

USA (EG ® type, INVE Aquaculture, Belgium). Bacteria –free cysts and nauplii were obtained using 

the procedure described by Marques et al. (2004 a). After hatching, 20 nauplii (Instar ΙΙ) were picked 

and transferred to Falcon tubes containing 30 ml of FASW together with the amount of feed scheduled 

for day 1. Feeding rates were intended to provide ad libitum ratios but avoiding excessive feeding in 

order not to affect the water quality in the test tubes, except in experiments 4 and 5 (treatments 19-20) 

where nauplii were overfed (5.74 mg AFDW/FT) (Table 3.3, feeding regime: d) in order to verify the 

effect of overfeeding. Each treatment consisted of four Falcon tubes (replicates). Falcon tubes were 

placed on a rotating rod at 4 cycles per min, exposed to constant incandescent light (± 41µEm-2) at 

28°C. Tubes were being transferred to the laminar flow just once per day for feeding.  

 

Table 3.3 Feeding regimes in the 3 experiments (Exp) performed. Daily and average total ash free dry 
weight (AFDW), expressed in µg/FT) of yeast cells and dead bacteria (LVS3) supplied to 
Artemia in experiment 3, 4 and 5. Challenge tests were performed with live Vibrio 
campbellii (VC) at a density of 5×106 cells/ml added at day 3 in experiment 4 and 5. 
Legend: a) dead LVS3+ yeast 5%; b) dead LVS3+ yeast 10%; c) the treatment dead LVS3 
X; d) the treatment: dead LVS3 2X; X = the total amount of feed offered (2870 µg 
AFDW/FT); Y = yeast (wild type and isogenic yeast mutants added at 5% or 10%); DB = 
dead bacterium LVS3.   

 
 
 Feeding       Day1                    Day2                     Day3                    Day4                            Day5      Total AFDW  
regime      Y        DB            Y       DB              Y       DB             Y            DB                Y           DB         offered (µg/FT)  
                    
Exp 3:        124        0              248       0             248        0             324           0                 496      0             1440 
                        
Exp 4-5: 
 
a)               25        221          50         442          50           442           62            592             100           886               2870     
 
b)              50       197          100        394           100        394            124          525             200           786               2870 
   
c)               0         246           0           492           0           492            0              656              0              984               2870 
 
d)               0         492           0           984           0           984            0             1312             0             1968              5740 
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2.5. Method used to verify axenity 

Axenity of feed, decapsulated cysts and Artemia cultures was checked at the end of each experiment 

using a combination of plating (MA) and live counting (using tetrazolium salt MTT staining following 

the procedure described by Marques et al. (2004 a,b). In challenge treatments, the axenity of Artemia 

culture was always checked before challenge using the same methods.  Contaminated culture tubes 

were not considered for further analysis and the treatment was repeated.    

 

2.6. Experimental design 

This study comprised 5 experiments and their experimental design was schematized in Fig. 3.1. In 

experiment 1, all live and axenic yeast strains (WT and 7 null mutants) were harvested in the 

exponential growth phase and used as feed for the Artemia. 

In experiment 2, stationary-grown live and axenic yeast strains (the same strains as used in experiment 

1) were used as feed for nauplii. In both experiments, a modified feeding schedule was adopted from 

Coutteau et al. (1990) and Marques et al. (2004 a,b). The feeding schedule resulted in an equal amount 

of yeast-cell particles per treatment being offered to Artemia. Both experiments were performed twice 

(A and B), to verify the reproducibility of the results. 

In experiment 3, an equal amount of feed was provided to Artemia (Table 3.3). As the AFDW per cell 

of the yeast mutants is different (see Table 3.2), this resulted in different amount of yeast cells being 

offered. Each feed was tested in four replicates. 

In experiment 4 & 5, all treatments were fed with an equal amount of yeast (in terms of AFDW). Yeast 

strains (in exponential and/or stationary growth phase) were provided daily in small but equal 

amounts, in combination with dead LVS3 (as a major part of the feed) to Artemia (Table 3.3- feeding 

regime for Exp. 4-5). As a control, Artemia was fed only dead LVS3 (Table 3.3- feeding regime: c). 

Challenge tests were performed with live VC at a density of 5×106 cells/ml added at day 3. 
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Fig. 3.1 Experimental design of the 5 experiments (Exp) performed. Legend: a)-g) correspond to the 
treatments performed; Y – yeast strains (wild type or isogenic yeast mutants). Yeast strains 
were added either at an equal amount of yeast cell particles (Exp 1 and 2) or an equal amount 
of feed (Exp3) or 5% or 10% (Exp 4 and 5); DB – dead bacterium LVS3; X - the total 
amount of dead LVS3 offered over the full experimental period (2870 µg AFDW/FT); P – 
pathogen (Vibrio campbellii).   

 
  Day 1 

Start 
Day 2 Day 3 Day 4 Day 5 Day 6 

Harvest 
Exp   
1-3 

   
a)     Y            →    Y              →    Y                 →    Y             →   Y             →  

Exp   
4-5 

 
   

b) 
 

DB+Y       → DB+Y        → DB+Y            → DB+Y        → DB+Y       → 

 

 

c) DB+Y       → DB+Y        → DB+Y+P        → DB+Y       → DB+Y       → 

 

 

d) DB (X)   → DB (X)   → DB (X)          → DB (X)   → DB (X)   → 

 

 

e) DB (X)     → DB (X)   → DB (X)+P      → DB (X)   → DB (X)   → 

 

 

f) DB (2X)   → DB (2X)   → DB (2X)    → DB (2X)  → DB (2X)  → 

 

 

g) DB (2X)  → DB (2X)  → DB (2X)+P   → DB (2X)  → DB (2X)  → 

 

        
 

2.7. Survival and growth of Artemia  

Survival and growth of Artemia nauplii were determined   according to procedures described by 

Marques et al. (2004 a,b). At the end of experiment 1, 2 and 3 (day 6 after hatching) the number of 

swimming larvae was determined and survival percentage was calculated. Living larvae were fixed 

with Lugol’s solution allowing to measure their individual length (growth calculation), using a 

dissecting microscope equipped with a drawing mirror, a digital plan measure and the software 

Artemia 1.0®(Marnix Van Domme). In order to integrate the results of survival and growth, the 

criterion ”total length” was introduced, i.e. total millimeters of Artemia per Falcon tube or mm/FT = 

numbers of survivors × mean individual length. 
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In experiments 4 and 5 the survival percentage for each treatment was determined daily. For this 

purpose, the number of live Artemia was registered before feeding (or adding any bacteria) by 

exposing each transparent Falcon tube to an incandescent light without opening the tube to preserve 

the axenity. 

Values of larval survival (percentage) were arcsin transformed, while values of individual length and 

total length were logarithmic or square root transformed to satisfy normal distribution and 

homocedastity requirements. Differences on survival, individual length and total length of Artemia fed 

with different feeds, were studied with analysis of variances (ANOVA) and multiple comparisons of 

Tukey’s range, tested at 0.05 level of probability, using the software SPSS 11.5 for Windows. 

 

3. Results 

3.1. Artemia performance fed live yeast cells 

Artemia nauplii were fed with 7 different isogenic mutant strains of baker’s yeast (Saccharomyces 

cerevisiae) (Table 3.1) and compared with nauplii fed wild type yeast under gnotobiotic condition. In 

all cases equal amounts of yeast cells were offered. The results presented in Table 3.4 and 3.5 (results 

obtained in experiment 1 and 2) show that independently of the growth stage, the yeast genetic 

background has a big influence on Artemia performance. Compared with WT yeast, total biomass 

production of nauplii was significantly improved when the exp-grown isogenic yeast mutant strains 

were used as feed, due to both significant higher survival and/or individual length (Table 3.4). Among 

them, the mnn9 yeast strain supported the best nauplii performance.  

Also the use of the mmn6 mutant resulted in a significantly improved total biomass production of 

Artemia. In this treatment a higher biomass production was obtained due to a considerable increase in 

survival. Using knr4 and fks1 (less β-1,3-glucans) and kre6 (less β-1,6-glucans) as feed resulted in less 

Artemia biomass production compared to the mnn9 yeast strain but significantly more Artemia 

biomass production compared to the WT-yeast. The chitin-defective yeast strain (chs3) supported a 
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small increase in Artemia biomass production compared to the WT-treatment, mainly due to better 

nauplii survival. Finally, using the gas1 mutant as food (this strain is lacking an important cell-wall 

protein involved in cross linking the major cell-wall components) resulted in better nauplii 

performance compared to WT yeast. 

Higher total biomass (except for fks1 fed Artemia) production (compared to WT) in Artemia fed 

mutant stat-grown yeast cells were mainly due to higher nauplii survival rather than stronger individual 

growth. Only with stat-grown mnn9 cells higher survival and stronger individual growth contributed to 

more biomass production. When exp-yeast cells were fed to the nauplii, significant higher total 

Artemia biomass production (mostly due to higher nauplii survival) values were observed in all cases 

compared with stat-yeast cells possibly because the AFDW of yeast cells in the exponential growth 

phase was higher than in the stationary growth phase (Table 3.2) (although not significantly different 

in the mnn9, gas1 and fks1 yeast strains).  

 
Table 3.4 Experiment 1: average survival (%), individual length (mm) and total length (mm per 

Falcon tube-FT) of Artemia nauplii fed live yeast cells (harvested in exponential growth 
phase) after 5 days: effect of growth stage and genetic background. Means were put 
together with the standard deviation (mean±S.D.). Each experiment was repeated twice A 
and B. Each feed was tested in four replicates. Values in the same column showing the 
same superscript letters are not significantly different (pTukey>0.05).    

 
 
 
 A                                                                                          B 
  

        Survival (%)    Individual       Total length           Surviva l (%)          Individual      Total lenght 
Strains                            length (mm)       (mm/FT)                                           length (mm)      (mm/FT) 
                                                                                                                                
WT           32±6c             1.3±0.1f              8.6±1.7d                29±7c                2.2±0.1cd             12.5±3.3d 
 
mnn9        87±9a             4.0±0.4a              70.7±7.7a              87±6a                3.9±0.2a                 68.7±5.0a 
 
mnn6        64±7bc           1.8±0.1de            23.5±2.6c               52±6bc              1.8±0.2d              19.0±2.3cd 

 
fks1          55±10b          2.1±0.1c              23.6±4.6c               50±12bc             2.2±0.3cd             20.0±9.0cd 
 
gas1         61±5b            3.2±0.2b              39.0±3.0b                64±5b               3.3±0.1b              42.0±3.0b 
 
knr4         62±6b            2.0±0.2cd             25.0±3.4c               50±12bc            2.3±0.1c               23.0±5.6cd 
 
kre6         45±4bc           2.0±0.1cd             18±1.6c                   58±13b             2.5±0.1c               29.0±6.0c 
 
chs3         55±5b            1.7±0.2e               18.5±2.0c               42±5bc              2.0±0.2cd             17.0±2.0cd 
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Table 3.5 Experiment 2- average survival (%), individual length (mm) and total length (mm per 
Falcon tube-FT) of Artemia nauplii fed live yeast cells (harvested in the stationary growth 
phase) after 5 days: effect of growth stage and genetic background. means were put 
together with the standard deviation (mean±S.D.). Each experiment was repeated twice A 
and B. Each feed was tested in four replicates. Values in the same column showing the 
same superscript letters are not significantly different (pTukey>0.05). 

 
 
 A                 B 
 

           Survival (%)       Individual       Total length         Survival (%)       Individual      Total lenght 
Strains                                  length (mm)      (mm/FT)                                        length (mm)   (mm/FT) 
                                                                                               
WT                  15±7d             1.75±0.2bcd       5.2±2.5c                25±4c               1.7±0.2bc           8.5±1.4c  
 
mnn9              68±5 a             3.3±0.2a           45.6±3.2a               71±4a               2.8±0.1a            40.0±2.7a 
 
mnn6              40±4bc            1.8±0.1bc          14.4±1.5b               38±8bc              1.3±0.1d            9.8 ±1.9bc 
 
fks1                18±3d             1.7±0.2bcd         6.6±0.9c                28±13bc            1.6±0.2bc           9.4±1.9bc 
 
gas1                35±4bc           2.0±0.3b            14.3±1.7b               40±7b               1.8±0.1b             14.9±2.6b 
 
knr4                48±5b            1.3±0.2d            13.2±1.3b              35±4bc              1.5±0.1cd           10.4±1.2bc 
 
kre6                40±13bc         1.6±0.1cd           12.6±4.0b              32±15b             1.6±0.2bcd         12.2±2bc 
 
chs3                29±8cd           1.7±0.2bcd          9.7±2.9bc              25±6bc              1.9±0.1b           9.3±2.2bc 
 
 

 

In the experiments described above equal amounts of yeast cell particles (Table 3.3 - feeding regime 

for Exp.3) were supplied as food, resulting, however, in different amounts of AFDW of food offered to 

Artemia (see Table 3.2). This could have been the reason for the considerable higher Artemia biomass 

production e.g. with mnn9 yeast. Hence, the feeding experiment was repeated, this time offering equal 

amounts of food expressed as AFDW. In all cases, feeding mutant-yeast cells resulted in better nauplii 

survival than feeding WT yeast. Also in this experiment, the mnn9-fed Artemia presented the highest 

biomass production (Table 3.6). Artemia biomass production was equal after feeding WT, fks1, kre6 

and chs3 cells although the mutants (kre6 and knr4) display respectively a higher or equal AFDW as 

compared with WT yeast.  
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Table 3.6 Experiment 3: average survival (%), individual length (mm) and total length (in mm/ Falcon 

tube (FT) ) of Artemia nauplii fed live yeast cells (harvested in the stationary growth phase) 
for 5 days: Effect of genetic background. All treatments were fed with an equal amount of 
feed corresponding to an AFDW (1.44±0.01mg/FT) (see Table 3.3- exp 3) (for instance fed 
with WT-YNB yeast cells). Means were put together with the standard deviation 
(mean±S.D.). Each feed was tested in four replicates. Values in the same column showing 
the same superscript letters are not significantly different (pTukey>0.05). 

 
 
 Strains          Survival (%)                 Individual length (mm)                    Total length 
          (mm/FT)  
 

                                                                                      
WT                   18±6c                                1.74±0.1c                                      6.1±2.2d 

                             
mnn9                63±6a                               2.44±0.1a                                      30.6±3.2a 

                
mnn6                35±9b                               1.8±0.1c                                        12.6±3.3bc 

               
fks1                  28±7bc                               1.67±0.1c                                      9.2±2.2cd  
              
gas1                  38±6b                               2.11±0.1b                                       15.8±2.7b 

               
knr4                  43±6b                               1.53±0.1d                                       13.0±2.0bc 

               
kre6                  33±7b                               1.33±0.1e                                       8.6±1.7cd  
                 
chs3                  33±6b                              1.81±0.1c                                       11.8±2.3bcd          
  
 

3.2. Artemia performance fed  bacteria (LVS3) and yeast and challeneged  

The effect of feeding two different amounts of dead bacteria (autoclaved LVS3) to the nauplii (either 

challenged or not with a live pathogen) is presented in Table 3.7 (experiment 4). Unchallenged, there 

is no effect on survival in the two feeding regime. Yet, nauplii fed with dead LVS3 (5.74 mg 

AFDW/FT) (Table 3.3, feeding regime: d) yielded a significantly higher survival in the challenge test 

as compared to the nauplii fed with only half of this amount (Tables 3.7, lines 20 and 22). The results 

of supplying a low amount of WT or isogenic yeast mutants to the nauplii fed dead LVS3 are 

presented in Table 3.7 and 3.8. Most of the unchallenged nauplii fed solely with dead LVS3 or both 

dead LVS3 and yeast cells survived until day 6 (68 % or higher). In most treatments, challenged 

nauplii fed only with dead LVS3 or both dead LVS3 and yeast cells (WT, mnn6, fks1, knr4, kre6) died 



   Chapter 3 

 97 

before day 5. Yet, exceptions occurred when the nauplii were fed both dead LVS3 and mnn9, gas1 and 

chs3 (only exp-yeast) yeast strains. In challenge treatments, only mmn9-fed nauplii could survive until 

day 6 (Tables 3.7 and 3.8, line 4). However, the addition of 5% of the total AFDW in the form of 

mnn9 yeast cells was not sufficient to keep the nauplii alive until day 6 (Tables 3.7 and 3.8, line 6). In 

all yeast strains, the exp-yeasts provided a higher survival against the pathogen than stat-yeasts, but in 

most cases, this better survival lasted only for a short period (one day after challenge). The mnn9 cells 

supported a high survival until the end of the experiments against the VC pathogen when offered as 

exp-grown or stat-grown cells (Tables 3.7 and 3.8, line 4). 
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TN                                                                                A     Survival (%)                                                                                               B    Survival (%) 
                                                                Day2        Day3        Day4         Day 5         Day 6                          Day2            Day3            Day4          Day5             Day6 
 
1     dead LVS3+ WT 10%                      93±3a        86±3a       81±5a       74±4a          68±3a                         91±3a          88±3a            83±3a          73±3a           66±3a   
2    dead LVS3+WT 10%+VC D3          91±3a        88±3a       56±5b       0b                0b                               88±3a           86±3a           55±4b                0b                            0b 
3    dead LVS3+  mnn9 10%                    98±3a        94±3a       90±4a        86±3a         83±3a                         96±3a          93±3a            91±3a          84±3a            80±4a     
4    dead LVS3+  mnn9 10%+VC D3      96±3a        93±3a       86±3a        80±4a         78±3a                         98±3a          93±3a             88±3a         81±5a             76±3a    
5    dead LVS3+mnn9 5%                        98±3a        93±3a       86±3a        80±4a         75±4a                        98±3a           93±3a            88±3a         84±3a             76±3a 
6    dead LVS3+mnn9 5%+VC D3          99±3a        89±3a       84±3a        31±5b         0b                               98±3a           91±3a            81±3a         35±4b             0b  
7    dead LVS3+mnn6 10%                     93±3a        89±3a       83±5a        79±3a         73±3a                         91±3a          89±3a            81±3a         78±3a            70±4a 
8    dead LVS3+mnn6 10%+VC D3       91±3a        88±3a       66±5b        0b               0b                               96±3a           86±3a            70±4b         0b                  0b      
9    dead LVS3+fks1 10%                       93±3a        86±3a       83±3a         79±3a        70±4a                        93±3a            86±3a            81±3a        78±3a             73±3a 
10  dead LVS3+fks1 10%+VC D3         93±3a        88±3a       64±5b         0b              0b                               91±3a            88±3a           66±5b         0b                  0b 
11  dead LVS3+knr4 10%                      94±3a        88±3a       79±3a         78±4a        73±3a                        93±3a            86±3a            81±3a        75±4a             69±3a   
12  dead LVS3+knr4 10%+VC  D3       93±3a        86±3a       63±3b          0b             0b                               93±3a           88±3a            66±3b             0b                   0b 
13  dead LVS3+kre6 10%                      94±3a        88±3a       80±4a          75±4a       71±3a                          93±3a            88±3a            83±3a        78±3a             70±4a 
14  dead LVS3+kre6 10%+VC D3        94±3a        88±3a        60±4b          0b            0b                                 93±3a             86±3a            65±4b        0b                   0b 
15  dead LVS3+gas1 10%                     93±3a         88±3a       84±3a          81±3a       73±3a                         94±3a            89±3a             86±3a        78±3a            71±5a 

16  dead LVS3+gas1 10%+VC D3       94±3a         86±3a       50±4b           36±4b           0b                             93±3a            88±3a             53±6b        33±6b              0b 

17  dead LVS3+chs3 10%                     94±3a          86±3a        79±5a           79±5a      75±3a                         96±3 a           88±3 a           81±5a             75±4a              74±3a 

18  dead LVS3+chs3 10%+VC D3       94±3a          88±3a        75±6a            34±5b          0b                            98±3 a           86±3 a           61±5a             28±3b              0b 
19  dead LVS3(2X)                               98±3a          93±3a         84±3a          78±3a          73±3a                         98±3 a            89±3 a           85±4a           78±3a          74±3a  
20  dead LVS3(2X))+VC D3                98±3a          86±3a         77±3a          53±3b          44±3b                         99±3 a            86±3 a           78±3a           65±4b          51±3b 
21  dead LVS3 (X)                               98±3a           90±3a         83±3a          76±3a          69±5a                          96±3 a           91±3 a            83±3a            75±4a           68±3a  
22  dead LVS3 (X)+VC D3                 96±3a            89±3a         56±5b          0b                 0b                                98±3 a           93±3 a            60±4b           0b                 0b 
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Table 3.8  Experiment 4: mean daily survival (%) of Artemia fed daily with dead LVS3 and yeast cell strains harvested in the stationary growth 
phase. The yeast cells constituted either 574±0.2 µg/ Falcon tube (FT) or 287±0.2 µg/FT of the total Ash Free Dry Weight (AFDW) 
supplied. The challenged test was performed with Vibrio campbellii (VC) added at day 3. Each experiment was repeated twice: A 
and B. Each feed was tested in four replicates. The total amount of feed offered is equal to 2870µg AFDW/FT. X- The total amount 
of dead LVS3 offered over the full experimental period (2870µg AFDW/FT). (Means were put together with the standard deviation 
(mean±SD.). Survival in the challenge test was compared directly to the survival of unchallenged Artemia. Values showing the same 
superscript letter are not significantly different (p>0.05)   

 
TN                                                                A     Survival (%)                           B      Survival (%) 
 
                                                                    Day2            Day3           Day4           Day 5           Day 6                 Day2           Day3             Day4      Day5             Day6 
 
1   dead LVS3+  WT 10%                           93±3a          88±3a          79±5a           75±3a            65±4a                 91±3a           88±3a             76±3a         73±3a            6±5a   
2   dead LVS3+WT 10%+VC D3               93±3a         89±3a           46±5b          0b                  0b                       94±3a           89±3a             45±6b          0b                     0b 
 
3    dead LVS3+  mnn9 10%                       99±3a         96±3a          91±3a           86±3a           83±3a                 98±3a            94±3a             89±5a         86±3a           80±4a   
4    dead LVS3+  mnn9 10%+VC D3         98±3a         95±3a          86±3a          81±3a            79±3a                 98±3a            93±3a             86±3a 83±3a           76±3a  
 
5    dead LVS3+mnn9 5%                           94±3a         89±3a          81±5a           75±4a           73±3a                 98±3a            91±3a             80±6a        75±4a            71±3a 
6    dead LVS3+mnn9 5%+VC D3             91±3a         88±3a          71±5a           23±3b            0b                       96±3a            90±4a             74±3b        25±4b            0b  
 
7    dead LVS3+mnn6 10%                         99±3a         91±3a         84±3a           78±3a             70±4a                99±3a           93±3a              83±3a        76±5a            69±5a 
8    dead LVS3+mnn6 10%+VC D3           98±3a         90±4a         43±3b            0b                  0b                      99±3a            91±3a             45±4b        0b                  0b      
 
9     dead LVS3+fks1 10%                          98±3a         91±3a         81±3a           76±3a            68±3a                 98±3a            91±3a             84±3a        75±4a            69±3a 
10   dead LVS3+fks1 10%+VC D3            96±3a         90±4a         41±5a           0b                   0b                       96±3a            90±4a             39±5b 0b                  0b 
 
11   dead LVS3+knr4 10%                         95±3a         89±3a          85±4a          78±3a            71±5a                 96±3a            91±3a             84±3a         76±5a           74±3a   
12  dead LVS3+knr4 10%+VC  D3           99±3a         88±3a        46±5b           0b                   0b                       98±3a            93±3a              50±4b         0b                 0b 
 
13   dead LVS3+kre6 10%                         98±3a         84±3a          79±3a         78±3a            69±5a                 96±3a             88±3a             78±3a         79±3a           71±5a 

14   dead LVS3+kre6 10%+VC D3           96±3a          86±3a         41±5b         0b                  0b                        98±3a            86±3a             38±3b          0b                 0b 
 
15   dead LVS3+gas1 10%                        91±3a          88±3a          84±3a        73±3a            69±3a                  93±3a             89±3a            83±3a          74±5a            71±3a 
16   dead LVS3+gas1 10%+VC D3          90±3a          89±3a          43±3b        25±4b               0b                     93±3a             86±3a            46±3b          28±3b                   0b 
 
17   dead LVS3+chs3 10%                       98±3a           88±3a         83±3a        75±4a            68±3a                  96±3a             89±5a            84±3a           78±3a           70±4a 
18   dead LVS3+chs3 10%+VC D3         98±3a           89±3a         68±3b         0b                  0b                        98±3a             88±3a             66±5b          0b                 0b 



Chapter 3 

 100 

  

Table 3.9  Summary table of results obtained in the challenged and unchallenged experiments: “A-B” means respectively statistically different 
(p<0.05) strong and moderate positive effect of yeast feed on Artemia performance in comparison to the wild-type yeast strain. C 
means no statistically effect of feed on Artemia performance in comparison to the wild-type yeast strain. “+” means protection (no 
significant difference in survival rate between challenged and unchallenged treatments) provided by small amounts of yeast feed (5
or 10%) on Artemia performance when fed with dead LVS3 and challenged with Vibrio campbellii . ”-“ means no protection 
(significant difference in survival rate between challenged and unchallenged treatments). A circle around the “+” means that the feed
was only protecting partially against the pathogen. D4, D5 and D6 correspond respectively to day 4, 5 and 6.  

 
 
      Unchallenged experiments (Exp1-3)                               Challenged experiments (Exp 4 -5) 
  
                                                                                      Survival (D6)           IL                  TBP                  survival (D4)       survival (D5)      survival (D6) 
Yeast strains            Phenotype                                    (%)                         (mm)             (mm/FT)                      (%)                       (%)               (%)  
  
WT                      control yeast                                          C                     C                    C                   +                      -                         - 
 
 
mnn9                   less mannan, higher chitin,                    A                     A                    A                    +                      +                         +    
                            higher β- glucans                            
  
mnn6 less phosphomannan                              B                     C                  C                  +                         -                         - 
 
 
fks1                     less β1,3 glucans,                                   B                  C                   C                  +                              -                         - 
   higher chitin  
            
knr4                     less β1,3 glucans,                                  B                      C                 C  +                          -          - 
  higher chitin  
          
kre6   less β1,6 glucans,                                  B                   C                 C                  +                         -          - 
   higher chitin 
 
chs3   less chitin                                               B                      C                 C                   +                         ⊕          - 
 
 
gas1   less integration of yeast cell                B                      B                 B                   +                               ⊕          - 
     adhesion proteins into the cell wall       
   less β1,3 glucans, higher chitin             
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4. Discussion 
 
Marques et al. (2004 a,b) have shown that yeast digestion by Artemia can be significantly improved by 

manipulating the genetic characteristics of the yeast, the growth stage and the medium used. This study 

confirms that the genetic background of the yeast strain used, has a strong influence on the Artemia 

performance (Experiment 1, 2 and 3). 

In this study, a yeast strain containing low concentrations of mannoproteins in the cell wall, such as the 

mnn9 mutant, always supported a high Artemia biomass production (i.e. best nauplii growth as well as 

highest survival rate). According to Coutteau et al. (1990), β-glucanase activity is detected in the 

digestive tract of Artemia but no mannase activity, making the external mannoprotein layer of the yeast 

cell wall probably the major barrier for the digestion of the yeast cell by the Artemia nauplii. 

Therefore, it is likely that the digestive enzymes of Artemia (such as β-glucanase) can easily enter and 

provide suitable digestion of yeast cells with reduced mannoprotein content. 

An improved Artemia performance was also obtained with yeast mutants with reduced β-glucans 

(fks1, knr4, kre6 and gas1) and chitin (chs3) levels as compared to the nauplii fed WT-yeast cells 

(especially with exp-grown yeast cells as food). According to Aguilar-Uscanga and Francois (2003), 

β-1,3 glucans and especially β-1,6 glucans provide anchorage to most cell-wall mannoproteins and are 

also covalently linked with chitin, contributing to the modular structure of the cell wall.  β-1,3 glucans 

also contribute to the rigidity and integrity of the cell wall, and determine the cell shape (Martine-Yken 

et al., 2002). As a consequence, a lack of β- glucans in the yeast cell wall might result in less covalent 

linkage between the three cell-wall compounds, resulting in a more permeable and digestible cell wall 

in comparison to the WT strain. Although in a WT yeast strain chitin concentration makes up only 1-2 

% of the cell-wall dry mass (Magnelli et al., 2002), it plays a key role in yeast cell growth and division 

and is attached covalently to β-1,3-glucans, β-1,6-glucans and mannoproteins (Cabib et al., 2001). 

Therefore, the better results obtained with nauplii fed chitin defective yeast could also be due to an 

enhanced digestibility of chs3-cells by Artemia, caused by reduced linkage between the three cell wall 

components. 
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In the gas1 yeast mutant, the production of the glycosylphosphatidylinositol (GPI) anchored protein is 

inhibited resulting in a non-proper fiber assembly of the cell wall (defective architecture) as well as in 

reduced β-glucans (Ram et al., 1998; Lipke and Ovalle, 1998). This apparently results in an eventually 

increased digestibility of gas1 cells by Artemia. Compared to WT-fed nauplii, yeast strains with 

reduced phosphomannan levels in the cell wall (mnn6) always gave higher Artemia performance 

mainly due to a higher nauplii survival. This fact could be due to interference of phosphomannans in 

phosphodiester cross-linking of mannoproteins to β-glucans (Jigami and Odani, 1999). In the 

experiments shown in Table 3.4 and 3.5, equal amounts of yeast cell particles (feeding schedule of 

exp. 1 and 2) are offered. This results in different amounts of AFDW being supplied (Table 3.2). We 

therefore, in a further experiment, supplied exactly equal amount of AFDW (see Table 3.3- feeding 

regime for exp. 3) of the different yeast cells to Artemia (Table 3.6). Consequently, in these 

experiments, the feed particle concentration, just after the feeding, was different with the various 

mutants. Also in this case mnn9-fed Artemia outperformed WT-fed Artemia (both in survival and 

individual growth). With the other mutants, Artemia biomass production improved mainly through 

higher survival. With two mutants, namely fks1 and chs3, Artemia biomass production was equal as in 

the experiment where WT-cells were offered. 

In the present study the Artemia nauplii displayed a higher performance when fed an exp-grown cells 

as compared stat-grown yeast strains. According to Klis et al. (2002), yeast cells entering the 

stationary phase of growth will form different cell walls, i.e. thicker, more resistant to enzymatic 

breakdown and less permeable to macromolecules. The level of mannosyl phosphorylation of cell-wall 

proteins increases in the late-exponential and stationary phase of growth (Odani et al., 1997). In 

addition more extensive cross-linking (through disulfide bridges) between the polysaccharide 

components of the cell wall (mannoproteins, glucans and chitin) is taking place in the stationary phase 

(Cabib et al., 2001; Deutch and Parry, 1974; De Nobel et al., 2004). In conclusion, it seems that the 

density of covalent linkage between the three cell-wall compounds of the yeast cell plays an important 

role in their digestibility by Artemia. In addition to that, high amounts of cell wall chitin and glucans in 



   Chapter 3 

 103 

combination with low amounts of mannoproteins favour Artemia biomass production under 

gnotobiotic condition (Marques et al., 2004 a,b).  

According to Raa (2000) improvements in the health status of aquatic organisms can be achieved by 

balancing the diet with regards to nutritional factors. This phenomenon is identified as nutritional 

immunology, since some nutritional factors are so closely linked with biochemical processes of the 

immune system that significant health benefits can be obtained by adjusting the concentration of such 

factors. Inadequate food or imbalances in the nutrient composition of the diet will affect growth and 

general performance of an animal, most likely, also the biochemical process of the immune system 

(Raa, 2000). In this study nauplii fed with dead LVS3 (5.74 mg AFDW/FT) (Table 3.4- feeding 

regime: d), presented significantly higher survival after challenge in comparison to nauplii fed solely 

with half of this amount (Tables 3.7). This experiment clearly illustrated that the outcome of the 

challenge with Vibrio campbellii under gnotobiotic condition is very much dependent on the overall 

condition of the nauplii. These results are also consistent with the perception that Vibrio spp are 

opportunistic pathogens. Therefore in all challenge experiments, in which the effect of yeast mutants 

were tested in small quantities, the total AFDW supplied was kept constant. The mnn9-fed Artemia 

could resist detrimental effect of pathogenic VC until the end of experiments as previously reported by 

Marques et al. (2005) (Tables 3.7 and 3.8). Nevertheless, the addition of 5% of mnn9 yeast was not 

able to protect nauplii against VC until day 6. The mnn9 yeast has a null mutation resulting in 

phenotypically increased amounts of cell wall bound chitin and glucans in combination with reduced 

amount of mannose linked to mannoproteins, and probably a reduced density of covalent linkages 

between these three yeast cell wall constituents and/or nature of the covalent bonds, in comparison to 

the WT strain (Magnelli et al., 2002; Aguilar-Uscanga and François, 2003). The protection provided 

by the mnn9 yeast could be the effect of general improvements in Artemia health condition due to 

extra (or better quality) nutrients available in this yeast or due to a stimulation of a non-specific 

immune response by some compounds, such as β-glucans or chitin that are present in the yeast cell 

wall. Vismara et al. (2004) considerably increased Artemia resistance to stress conditions, such as poor 
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growth medium quality and daily handling, by administering daily nauplii with a mutant of Euglena 

gracilis  presenting high amount of β-glucans (and thus enabling its response against disease). In 

contrast to mnn9 yeast, which has both strong nutritional and/or possible immunologic characteristics, 

gas1 cells have good nutritional effects, and protect nauplii temporarily against the pathogen in the 

challenge test. Furthermore, weak or no nutritional and protection effects were observed with fks1, 

knr4, mnn6 and kre6 yeast cells. Yet, interestingly, temporary protection against VC was obtained by 

adding chs3 in the diet, while this mutant has hardly any effect on individual growth (Table 3.7). Using 

the described set of yeast mutants, a full or partial protection against VC can be associated with 

increased glucan and chitin in the cell wall (e.g. mnn9 but also gas1) and reduced chitin and increased 

glucan in the cell wall (chs3). This seems to suggest that chitin as such is not involved in the protection 

against VC. Rather the results indicate that glucan as such is the potential active compound.   

β-glucans have been identified as specific immunostimulants activating the aquatic organisms immune 

system and protecting them from adverse conditions (Anderson, 1992). For example, yeast 

Saccharomyces cerevisiae has been found to be a good enhancer of the trout immune system (Siwicki 

et al., 1994). Patra and Mohamed (2003) showed that Artemia supplemented with Saccharomyces 

boulardi were protected against Vibrio harveyi. The results showed that chitin-enrichment in the fks1 

strain may be responsible for increasing the innate immune responses resulting in beneficial effects on 

fish performance. The later findings are not supported by our results. 

In conclusion, the mnn9 yeast strain, even in small quantities, can protect Artemia nauplii against 

pathogenic bacteria, suggesting that this yeast strain is possibly stimulating the innate immune 

response. It seems probably that mnn9 cells protect nauplii either through their higher concentration of 

β-glucans in the cell wall and/or the higher availability of β-glucans to nauplii. However, an overall 

nutritional stimulation by mnn9 with positive effect on the immunological status cannot be excluded. 

Using chs3 strain (in comparison to WT) as feed has very little extra effect on the growth and survival. 

Yet, this feed can temporarily protect Artemia against VC.   
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Anti-infectious potential of beta-mercaptoethanol treated baker’s yeast in 

gnotobiotic Artemia challenge test 

 

Abstract 

A selection of isogenic yeast strains (with deletion for genes involved in cell-wall synthesis) was 

treated with 2-mercapto-ethanol (2ME) and then used to evaluate their nutritional and anti-infectious 

characteristics for gnotobiotically-grown Artemia. In the first set of experiments the effect of the 

chemical treatment on the yeast nutritional value was studied.  In most cases, 2ME-treated yeast cells 

were better feed for Artemia than the untreated cells. The better performance of Artemia fed 2ME-

treated cells was due either to an increased survival (with WT, knr4 and chs3) or a better individual 

growth (fks1 and kre6) or due to both (mnn6). The second set of experiments, investigated the use of a 

small quantity (10% of the total feed supplied) of 2ME-treated yeast cells in Vibrio campbellii (VC) 

challenged Artemia. The 2ME-treated gas1, kre6 and chs3 strains improved Artemia resistance against 

VC. However, the enhanced resistance with these strains is not concomitant with a better individual 

growth (e.g. as observed with mnn9-fed Artemia), suggesting non-interference of general nutritional 

effects for these three 2ME-treated strains. It is postulated that this simple chemical treatment in these 

strains could increase the bio-availability of protective compounds (such as β-glucans) to Artemia,  

stimulating its immune system.     

 

1. Introduction 

According to Raa (2000), invertebrates are apparently entirely dependent on non-specific immune 

mechanisms to cope with infections, as they lack the specific immunological “memory” that is found 

in fish and warm-blooded animals. As a result, it does not seem to make sense to vaccinate them 

against specific diseases. Nowadays, the use of preventive and environment-friendly approaches such 

as probiotics, immunostimulantns, antibacterial peptides and quorum sensing systems is becoming 
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increasingly important in aquaculture (Bachére et al., 2003; Sakai, 1999; Verschuere et al., 2000; 

Defoirdt et al., 2005). However, the application of such technologies must be based on thorough 

understanding of the mechanisms involved and the putative consequences. An essential part of that 

understanding can be provided by studies looking in detail at host-microbial interactions. A key 

experimental approach to study these interactions is to define first the functioning of the host in the 

absence of bacteria and then to evaluate the effect of adding a single or defined population of 

microbes, or certain compounds (i.e., under axenic or of certain gnotobiotic conditions) (Teunissen et 

al., 1998; Anderson, 1992; Sung et al., 1996). Marques et al. (2004a) have recently developed and 

validated the usefulness of an Artemia gnotobiotic test system allowing studying the effect of food 

composition as well as the host-microbial interaction on survival and growth of Artemia in the 

presence or absence of a pathogen.     

Saccharomyces cerevisiae, which has been found to be a good immune enhancer in some aquatic 

organism (Siwicki et al., 1994; Ortuño et al., 2002; Li et al., 2003, 2004) is an excellent source of β-

glucans and chitin. These compounds together with mannoproteins constitute the major compounds of 

the yeast cell-wall (Magnelli et al., 2002). In fact, the four major components of the yeast cell wall are 

β-1,3- glucan (50% of cell wall dry weight-DW) and chitin (1–2% of cell wall DW), mostly presented 

in the inner layer and β-1,6-glucan (8% of cell wall DW) and mannan (40–50% of cell wall DW), 

mostly present in the outer layer (Marques et al., 2004a; Dallies et al., 1998; Klis et al., 2002; Keith et 

al., 1992). According to Jigami and Odani (1999) mannoproteins located in the outer layer of the yeast 

cell wall determine the wall’s porosity and thereby regulate leakage of proteins from the periplasmic 

space and entrance of macromolecules from the environment.  

As reported by Couteau et al. (1990), β-glucanase activity is detected in the digestive tract of Artemia 

but no mannase activity is found, making the external mannoprotein layer of the yeast cell wall 

probably the major barrier to yeast digestion by Artemia. Several methods have been developed to 

improve the digestibility of Single Cell Proteins (SCP) such as mechanical distruption, autolysis and 

enzymatic treatment (Kihlberg, 1972; Hendenskog and Morgen, 1973). However, as a result of these 
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drastic treatments soluble cytoplasmatic contents in the yeast cells are exposed to the environment. As 

a consequence, yeast nutrients are lost to filter feeders and, moreover, culture conditions deteriorate 

due to reduced water quality. Coutteau et al., (1990) proposed a chemical treatment, which makes the 

yeast digestible while maintaining the cell integrity. In a previous study (Soltanian et al., 2007) the 

effect of isogenic yeast deletion mutants (8 strains), carrying a null mutation in a gene involved in cell 

wall synthesis, was evaluated in a gnotobiotic Artemia test system. The present study aims at 

investigating the influence of 2-beta-mercaptoethanol (2ME) treated yeast cells on Artemia 

performance in a gnotobiotic Artemia test system. Firstly, Artemia performance was examined with the 

yeast strains affected in their cell wall synthesis, (harvested in stationary growth phase) either treated 

or untreated with the reducing agent 2ME. In a second stage, these feed sources were tested in 

combination with a Vibrio campbellii challenge. 

 

2. Methodology 

2.1. Axenic yeast culture and preparation 

To verify the digestibility of live baker’s yeast (S. cerevisiae) by Artemia, 7 different null-mutants of 

yeast (isogenic deletion strains derived from baker’s yeast strain BY 4741) and the wild type strain 

(WT) (genotype described in Table 4.1) were fed to Artemia. All strains were provided by 

EUROSCARF (University of Frankfurt, Germany). 
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Table 4.1  Genotype of all yeast strains used as feed for Artemia and description of each gene mutation in the development of cell wall components. 
 
 
Strains Genotype Phenotype (cell wall changes) Reference 

 
WT BY 4741; Mat a; his 3 Δ l; leu 2Δ0; control yeast Dallies et al.(1998); Klis et al.(2002);  
 met 15Δ0; ura3 Δ0  Magnelli et al.(2002); Marques et al.(2004)  
 
mnn9 BY4741; Mat a; his 3 Δ l; leu 2Δ0;  less mannan, higher chitin, Klis et al.(2002); Klis et al.(2002);  
 met 15Δ0; ura3 Δ0;YPL050c::kanMX4  higher β- glucans Magnelli et al.(2002); Marques et al.(2004) 
 
 
mnn6 BY4741; Mat a; his 3 Δ l; leu 2Δ0; less phosphomannan Karson and Ballou (1978); Wang et al (1997) 
 met 15Δ0; ura3 Δ0;YPL053c::kanMX4  Jigami and Odani (1999) 
 
 
fks1 BY4741; Mat a; his 3 Δ l; leu 2Δ0; less β1,3-glucans, Dallies et al.(1998); Magnelli et al.(2002);  
 met 15Δ0; ura3 Δ0;YLR342w::kanMX4 higher chitin Martin-Yken et al.(2002); Pagé et al.(2003) 
   Aguillar-Uscana and Francois (2003)  
 
knr4 BY4741; Mat a; his 3 Δ l; leu 2Δ0; less β1,3-glucans, Dallies et al.(1998); Magnelli et al.(2002); 
 met 15Δ0; ura3 Δ0;YGR229c::kanMX4 higher chitin Martin-Yken et al.(2002); Pagé et al.(2003); 
   Aguillar-Uscana and Francois (2003) 
 
kre6 BY4741; Mat a; his 3 Δ l; leu 2Δ0; less β1,6-glucans,  Magnelli et al.(2002);  
 met 15Δ0; ura3 Δ0;YPR159w::kanMX4 higher chitin  Francois(2003) ; Martin-Yken et al.(2002); 
   Pagé et al.(2003) 
 
chs3 BY4741; Mat a; his 3 Δ l; leu 2Δ0; less chitin Valdivieso et al.(2000); Cabib et al.(2001); 
 met 15Δ0; ura3 Δ0;YBR023c::kanMX4  Klis et al.(2002); Magnelli et al.(2002); 
 
 
gas1 BY4741; Mat a; his 3 Δ l; leu 2Δ0; less integration of yeast cell  De Nobel et al.(1994); Popolo et al.(1997) 
 met 15Δ0; ura3 Δ0;YMR307w::kanMX4 adhesion proteins into the cell wall Lipke and Ovalle (1998);  

 less β1,3- glucans, higher chitin Magnelli et al.(2002) 
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Yeasts cells were grown according to the procedures described by Marques et al. (2004a), using 

minimal Yeast Nitrogen Base culture medium (YNB). Yeasts were harvested by centrifugation (± 800 

× g for 10min) in the stationary growth phase (after 3 days;”stat.yeast”). Chemical (2ME) treatment 

was applied on yeast cells according to the procedure described by Coutteau et al., (1990). First, yeast 

cells were suspended at a concentration of 200 mg wet weight/mL in a sterilized medium containing 

Na2EDTA (0.05 M) and Tris-buffer (0.2 M; pH 8). After addition of (2ME) (2% volume/volume) the 

yeasts were incubated for 30 minutes at 30°C.  Pre-treated yeasts were collected and washed with 

protoplasting medium comprising a phosphate-citrate buffer (KH2PO4 0.08 M; Na3citrate 0.016 M; pH 

5.8) and KCl (0.6 M). Finally, yeast cells were washed three times with filtered (0.2µ) seawater. Yeast 

cell concentrations were determined with a Bürker haemocytometer. Yeast suspensions were stored at 

4 °C until the end of each experiment (maximum storage of one week). 

 

2.2. Bacterial strains and growth conditions 

Two bacterial strains were used, i.e. Aeromonas hydrophila strain LVS3 (Verschuere et al., 1999, 

2000; Marques et al., 2005) for its positive effect on Artemia performance when fed at sub-optimal 

concentration and Vibrio campbellii strain LMG21363 (VC) for its pathogenic effect towards Artemia 

and shrimp (Marques et al., 2005; Soto-Rodriguez et al., 2003; Gomez-Gil et al., 2004). The two 

bacterial strains were cultured and harvested according to Marques et al. (2004a). Bacteria were 

resuspended in filtered and autoclaved seawater (FASW) and their densities determined by 

spectrophotometry (OD550 ),  assuming that an optical density of 1.000 corresponds to 1.2×109 cells/ml, 

according to the McFarland standard (Biomerieux, Marcy l’Etoile, France). At day 3, challenge tests 

were performed with live VC according as described by Soltanian et al. (2007). 
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2.4. Artemia gnotobiotic culture  

Experiments were performed with Artemia franciscana cysts, originating from Great Salt Lake, Utah- 

USA (EG ® type, INVE Aquaculture, Belgium). Bacteria–free cysts and nauplii were obtained 

according to Sorgeloos et al. (1986). After hatching, 20 nauplii (Instar ΙΙ) were picked and transferred 

to Falcon tubes containing 30 ml of FASW together with the amount of feed scheduled for day 1. 

Feeding rates were intended to provide ad libitum ratios but avoiding excessive feeding in order not to 

affect the water quality in the test tubes. Each treatment consisted of four Falcon tubes (replicates). 

Falcon tubes were placed on a rotating rod at 4 cycles per min, exposed to constant incandescent light 

(± 41µEm-2) at 28°C. Tubes were being transferred to the laminar flow just once per day for feeding.  

 

2.5. Method used to verify axenity 

Axenity of feed, decapsulated cysts and Artemia cultures was checked at the end of each experiment 

using a combination of plating (Marine Agar) and live counting (Marques et al. (2004a) (using 

tetrazolium salt MTT (-3-(4,5-dimethylthazol-2, 5-diphenyl tetrazolium bromide; Sigma, 0.5 % w/v). 

In challenge treatments, the axenity of Artemia culture was always checked before challenge using the 

same methods. Contaminated culture tubes were not considered for further analysis and the treatment 

was repeated. 

 

2.6. Experimental design 

This study comprises 3 experiments and their experimental design is schematised in Fig. 4.1. In 

experiment 1, stationary-grown live and axenic yeast strains (WT and 7 null mutants) both treated or 

untreated with 2ME were used as feed for nauplii. In this experiment, a modified feeding schedule was 

adopted from Coutteau et al. (1990) and Marques et al. (2004a). This experiment was performed twice 

(A and B), to verify the reproducibility of the results. 
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Fig. 4.1  Experimental design of the 3 experiments (Exp) performed. Legend: a)-h) correspond to the 
treatments performed; Y: Untreated yeast strains (wild type or isogenic yeast mutants). Y-T: Yeast 
strains (wild type or isogenic yeast mutants) treated with 2ME. Yeast strains were added either at an 
equal amount of yeast cell particles (Exp 1) or 10% of the total AFDW supplied (287 µg/FT) (Exp 2 
and 3); DB – dead bacterium LVS3 which was offered over the full experimental period (2870 µg 
AFDW/tube); P – pathogen (Vibrio vampbellii) added on day 3.   

 

In experiment 2 and 3, all treatments were fed with an equal amount of feed on a dry weight basis. 

Yeast strains were provided daily in small but equal amounts (only 10% of total ash free dry weight 

(AFDW) supplied which is equal to 287 µg/tube) in combination with dead LVS3 (as a major part of 

the feed) to Artemia (Table 4.2- feeding regime for Exp. 2 and 3). The total amount of dead LVS3 

provided to Artemia was approximately 10.5 × 109 cell/tube that is equal to 2870 µg AFDW/tube 

(distributed in 5 daily feeding portions based on the fraction 9:17:17:23:34 and added daily to Artemia 

over the experimental period). The total amount of AFDW of yeast and bacteria added to Artemia in 

experiment 2 and 3 is presented in Table 4.2. As a control, Artemia was fed only dead LVS3 (Table 

 
Day 1 
Start 
 

Day 2 Day 3 Day 4 Day 5 Day 6 
Harvest 

Exp 1 
            a)  
 

Y              → Y                → Y                   →  Y               → Y              →  

            b) Y-T          → Y-T             → Y-T                → Y-T            →  Y-T          →  
Exp 
2-3 
            c) 

 

DB+Y        →
 

DB+Y         → 

 

 DB+Y           →
 

DB+Y         → 

 

DB+Y       → 
 

 
            d) 

 

DB+Y        →
 

DB+Y          → 

 

 DB+Y+P        →
 

DB+Y         → 

 

DB+Y        → 
 

           e) DB+Y-T     → DB+Y-T       →  DB+Y-T         → DB+Y-T      →   B+Y-T     →  

           f) DB+Y-T     → DB+Y-T       →  DB+Y-T+P    →  DB+Y-T     → B+Y-T      →  

           g) DB            → DB              →  DB               →  DB            → DB            →  

            h) DB             → DB              → DB+P             → DB              → DB            →  
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4.2- feeding regime: b). Challenge tests were performed with live VC at a density of 5×106 cells/ml 

added at day 3. 

 
 

Table 4.2 Feeding regimes in the 2 experiments (Exp) performed. Daily and average total ash free 
dry weight (AFDW), expressed in µg/FT of yeast cells and dead bacteria (LVS3) supplied 
to Artemia in experiment 1 and 2. Challenge tests were performed with live Vibrio 
campbellii (VC) at a density of 5×106 cells/ml added at day 3 in experiment 2 and 3. 
Legend: a) dead LVS3+ yeast 10%; b) the control treatment: dead LVS3; Y = yeast (wild 
type and isogenic yeast mutants treated and/or untreated added 10%); DB = dead 
bacterium LVS3.  

 
  
Feeding                                                                                                                                                                   Total AFDW  
regime                                                                                                                                                                 offered (µg/FT)  
                             Day1                    Day2                     Day3                    Day4                            Day5                
                         Y        DB            Y       DB              Y       DB             Y            DB                Y           DB 
Exp 2-3: 
      
a)                    25        221          50         442          50           442           62            592             100           886                   2870 
 
b)                    0         246           0           492           0           492            0              656              0              984                  2870 
 
 

 

2.7. Survival and growth of Artemia  

Survival and growth of Artemia nauplii were determined according to procedures described by 

Marques et al. (2004a). At the end of experiment 1 and 2 (day 6 after hatching) the number of 

swimming larvae was determined and survival percentage was calculated. Living larvae were fixed 

with Lugol’s solution allowing to measure their individual length (growth calculation), using a 

dissecting microscope equipped with a drawing mirror, a digital plan measure and the software 

Artemia 1.0®(Marnix Van Domme). In order to integrate the results of survival and growth, the 

criterion ”total length” was introduced, i.e. total millimeters of Artemia per Falcon tube or mm/FT = 

numbers of survivors × mean individual length. 

RPS value was determined in Artemia fed with various yeast strains accoprding to the following 

equation: 
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RPS (%) =  (Percentage of surviving challenged Artemia)/( Percentage of surviving unchallenged 

Artemia) ×100 

In experiment 2 and 3, the survival percentage in each treatment was determined daily. For this 

purpose, the number of live Artemia was registered before feeding (or adding any bacteria) by 

exposing each transparent Falcon tube to an incandescent light without opening the tube to preserve 

the axenity. 

Values of larval survival (percentage) were arcsin transformed, while values of individual length (IL) 

and total biomass production (TBP) were logarithmic or square root transformed to satisfy normal 

distribution and homoscedasticity requirements. Differences in survival, RPS, IL and TBP of Artemia 

cultured in different conditions were investigated with analysis of variances (ANOVA) and Tukey’s 

multiple comparison range. In all statistical analyses (SPSS 11.5 for Windows) the null hypothesis was 

rejected at the 0.05 level of probability. 

 

3. Results 

3.1. Artemia performance fed treated and untreated live yeast cells 

Artemia nauplii were fed with 8 strains of baker’s yeast (Saccharomyces cerevisiae) under gnotobiotic 

conditions. In all cases equal amounts of yeast cells were offered (Table 4.2). 

The results presented in Table 4.3 (results obtained in experiment 1) show that independently of the 

chemical treatment, the yeast genetic background has a big influence on Artemia performance. 

Compared with WT yeast, total biomass production (TBP) of nauplii was significantly improved when 

isogenic yeast mutant strains were used as feed, due to both significant higher survival and/or 

individual length (IL) (Table 4.3). Among them, the mnn9 yeast strain supported the best nauplii 

performance. 
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Table 4.3 Experiment 1- average survival (%), individual length (IL) (mm) and total biomass 
production (TBP) (mm per Falcon tube-FT) of Artemia nauplii fed live yeast cells 
(harvested in the stationary growth phase and treated or untreated with 2ME) after 5 days: 
effect of yeast genetic background and chemical treatment on Artemia performance. 
Means were put together with the standard deviation (mean±S.D.). Each experiment was 
repeated twice A and B. Each feed was tested in four replicates. TN means treatment 
number. Values in the same column showing the same superscript letters are not 
significantly different (pTukey>0.05). 

 
 
 
Using 2ME-treated yeast cells as feed for Artemia, significantly improved Artemia biomass production 

either due to a considerable increase in survival (e.g. with WT, knr4 and chs3) or because of an 

improved IL (e.g. with fks1 and kre6) in respect to untreated yeast cells. Only by feeding treated mnn6 

cells, improved TBP was due to both significant higher survival and higher individual length (IL) of 

Artemia. However when 2ME-treated mnn9 and gas1 cells were used to feed Artemia, no significant 

improvement in Artemia performance was observed in respect to untreated cells (see Table 4.3).  

 

   Exp1 A    B   
        
TN 

 Survival 
(%) 

IL (mm) TBP (mm/FT)  Survival (%) IL (mm) TBP (mm/FT) 

1 WT 43±7f 1.4±0.1ef 12.3±1.9i  45±7e 1.7±0.1ef 12.3±1.9j 
2 WT-T 69±8de 1.5±0.1ef 20.7±2.3g  61±5d 1.6±0.1ef 20.7±2.3ghi 
         
3 mnn9 89±5ab 3.6±0.1a 64.0±3.5a  83±3a 3.5±0.1a 64.0±3.5a 
4 mnn9-T 88±3ab 3.6±0.4a 63.0±2.1a  84±8a 3.6±0.1a 63.0±2.1a 
         
5 mnn6 59±5ef 1.3±0.1f 14.8±1.2hi  65±4cd 1.4±0.1g 14.8±1.2ij 
6 mnn6-T 88±3ab 1.6±0.1de 28.2±0.9def  83±3a 1.5±0.2efg 28.2±0.9ef 
         
7 fks1 74±6cde 1.6±0.1de 23.3±2.0fg  69±5bcd 1.7±0.1de 23.3±2.0fgh 
8 fks1-T 79±8bcd 2.3±0.1c 36.4±3.5c  81±5a 2.2±0.1c 36.4±3.5d 
         
9 knr4 71±6de 1.4±0.1ef 20.4±1.8g  69±5bcd 1.5±0.1fg 20.4±1.8hi 
10 knr4-T 83±5abcd 1.6±0.2de 26.7±1.6ef   78±3abc 1.7±0.1de 26.7±1.6efg 
         
11 kre6 85±4abc 1.8±0.1d 30.0±1.4de  79±3ab 1.7±0.1ef 30.0±1.4e 
12 kre6-T 85±4abc 2.6±0.1b 44.9±2.2b  88±7a 2.2±0.1c 39.3±2.9cd 
         
13 gas1 88±3ab 2.6±0.1b 46.0±1.5b  84±3a 2.8±0.1b 46.0±1.5b 
14 gas1-T 90±4ab 2.5±0.1bc 44.5±2.0b  81±5a 2.8±0.1b 44.5±2.0bc 
         
15 chs3 64±6e 1.5±0.1de 19.6±1.9gh  66±8bcd 1.6±0.1efg 19.6±1.9hi 
16 chs3-T 91±3a 1.6±0.1de 32.7±0.9cd  83±3a 1.9±0.1d 27.2±5.0ef 
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3.2. Artemia performance fed  treated and untreated yeast cells and challenged  

The results of the challenge tests, when supplying yeast cells and dead LVS3 (respectively 10 and 90% 

of the AFDW offered) as feed to the nauplii, are presented in Table 4.4 and 4.5. No significant 

difference was observed in Artemia survival until day 3 (before challenge test) (data not shown). Most 

of the unchallenged nauplii fed solely with dead LVS3 or both dead LVS3 and yeast cells survived 

until day 6 (68 % or higher). In most treatments, some challenged nauplii fed only with dead LVS3 or 

both dead LVS3 and untreated yeast cells (WT, mnn6, fks1, knr4, kre6) could survive until day 6 

although with poor survival (18% or lower). Yet, exceptions occurred when the nauplii were fed both 

dead LVS3 and 2ME-treated mnn9, gas1 and chs3 yeast strains. Only mmn9 yeast cells (either treated 

or not) could provide high survival against the live pathogen until day 6 (Table 4.4 and 4.5, treatment 6 

and 8). When 2ME-treated yeast cells were supplied to challenged nauplii, significantly improved 

Artemia survival, the RPS and the total biomass production values (in respect to untreated yeast cells) 

(Table 4.4 and 4.5 treatments: 22 vs 24, 26 vs 28 vs 30 vs 32) were noticed with some strains, namely 

kre6, gas1 and chs3. For all other cases 2ME-treatment did not enhance the survival, the RPS or the 

total biomass production of challenged Artemia (Table 4.4 and 4.5, treatments: 2 vs 4, 6 vs 8, 10 vs 12, 

14 vs 16, 18 vs 20). 
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Table 4.4 Experiment 2: mean daily survival (%) of Artemia fed daily with dead LVS3 and yeast cell strains 
harvested in the stationary growth phase (treated or utreated with 2ME). The yeast cells constituted 
10% of the total AFDW supplied (287 µg/FT). The challeng test was performed with Vibrio 
campbellii (VC) added on day 3. Each feed was tested in four replicates. TN means treatment 
number. RPS means relative percentage survival obtained in each treatment group (comparing the 
survival in the challenged treatment with the respective unchallenged (control)).The total amount of 
feed offered is equal to 2870µg AFDW/tube. Means were put together with the standard deviation 
(mean±SD.). Survival in the challenge test was compared directly to the survival of unchallenged 
Artemia. The effect of yeast chemical treatment on Artemia performance was demonstrated by 
comparing the effect of treated yeast cells in respect to untreated yeast cells on Artemia survival and 
growth. Values showing the same superscript letter are not significantly different (p>0.05).   

 

 

 Exp 2 Survival 
 (%) 

   IL 
 (mm) 

 TBP 
 (mm/FT) 

TN  Day 4 Day 5 Day6 RPS 
 (%) 

  

1 dead LVS3+WT10% 81±5bcd 79±5abcd 75±4abc 15g  1.4±0.1ghijk 20.3±1.1fghi 
2 dead LVS3+WT10%+VC 70±4fgh 20±4j 11±3i   1.4±0.1 fghij 3.0±0.7n 
3 dead LVS3+WT-T10% 84±5abc 81±3abc 79±3abc 20fg  1.5±0.1defghi 23.7±0.8ef 
4 dead LVS3+WT-T10%+VC 68±6gh 24±6j 16±5ghi   1.4±0.1fghij 4.6±1.4lmn 

5 dead LVS3+mnn9 10% 91±3a 86±3a 80±3a 92a  3.1±0.3a  49.9±1.8a 
6 dead LVS3+mnn9 10%+VC 86±3ab 78±3abcd 74±3abc   2.8±0.3a  41.3±1.4c 
7 dead LVS3+mnn9-T 10% 84±3bc 80±4abc 78±3abc 91a  3.0±0.2a  47.1±1.7ab 
8 dead LVS3+mnn9-T 10%+VC 83±3bcd 73±3cde 71±3abcd   2.7±0.2a  38.8±1.4c 

9 dead LVS3+mnn6 10% 84±3bc 78±3abcd 70±4bcd 20fg  1.4±0.1ghijk  19.7±1.2ghi 
10 dead LVS3+mnn6 10%+VC 68±5gh 26±3ij 14±3hi   1.2±0.1k  3.4±0.6n 
11 dead LVS3+mnn6-T 10% 83±3bcd 78±3abcd 73±3abc 25f  1.5±0.1defgh  22.2±0.8efg 
12 dead LVS3+mnn6-T 10%+VC 71±3efgh 30±4ij 18±6ghi   1.3±0.1ijk  4.6±1.7lmn 

13 dead LVS3+fks1 10% 81±3bcd 76±3abcd 68±3 bcd 26fg 1.5±0.1cdefgh  20.6±0.9fghi 
14 dead LVS3+fks1 10%+VC 70±4fgh 29±5ij 18±3ghi  1.3±0.1hijk  4.6±0.8lmn 
15 dead LVS3+fks1-T 10% 84±3bc 79±5abcd 75±4abc 31ef 1.5±0.1defghi  22.4±1.2efg 
16 dead LVS3+fks1-T 10%+VC 71±3efgh 36±6hi 23±3fgh  1.4±0.1ghijk  6.3±1.8klm 

17 dead LVS3+knr4 10% 85±4ab 78±3abcd 74±5abcd 13g 1.3±0.1jk 19.54±1.2ghi 
18 dead LVS3+knr4 10%+VC 68±3gh 24±5j 10±4i  1.3±0.1hijk 2.6±1.1n 
19 dead LVS3+knr4-T 10% 86±3ab 81±3abc 75±4abc 24fg 1.5±0.1defghi 22.5±1.2efg 
20 dead LVS3+knr4-T 10%+VC 68±3gh 31±6ij 18±6ghi  1.4±0.1ghijk 4.8±1.8lmn 

21 dead LVS3+kre6 10% 79±3bcdef 78±3abcd 74±5 abcd 22fg 1.5±0.1efghij 22.2±1.4efg 
22 dead LVS3+kre6 10%+VC 65±4h 29±5ij 16±3ghi  1.4±0.1fghijk 4.6±0.7lmn 
23 dead LVS3+kre6-T 10% 84±3bc 79±5abcd 75±4abc 51de 1.7±0.1bcd  25.5±1.4de 
24 dead LVS3+kre6-T 10%+VC 75±4cdefgh 51±5fg 38±5f  1.6±0.1bcdef  12.4±1.6j 

25 dead LVS3+gas1 10% 84±3bc 73±3cde 69±3 bcd 36ef 1.8±0.1b 25.1±0.9de 
26 dead LVS3+gas1 10%+VC 74±5defgh 45±6gh 25±4fgh  1.6±0.1bcdefg  7.9±1.3kl 
27 dead LVS3+gas1-T 10% 86±3ab 84±3ab 79±3abc 67cd 1.8±0.1b  28±0.9d 
28 dead LVS3+gas1-T 10%+VC 78±3bcdefg 64±5ef 53±5e  1.6±0.1bcdef  17.3±1.6i 

29 dead LVS3+chs3 10% 83±3bcd 75±4bcde 78±3 abc 43de 1.6±0.1bcdef 25.2±1.4de 
30 dead LVS3+chs3 10%+VC 74±5defgh 49±5gh 34±9f  1.4±0.1efghi  9.7±2.5jk 
31 dead LVS3+chs3-T 10% 86±3ab 84±3ab 81±5ab 74bc 1.8±0.1bc  28.4±1.7d 
32 dead LVS3+chs3-T 10%+VC 80±4bcde 68±3de 60±6de  1.6±0.1bcdef  19.7±1.9ghi 

33 dead LVS3 83±3bcd 78±3abcd 70±6bcd 2fg 1.4±0.1efghi 19.4±1.6ghi 
34 dead LVS3+VC 68±3gh 28±6ij 15±4ghi  1.4±0.1efghi  4.1±1.1mn 
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Table 4.5 Experiment 3: mean daily survival (%) of Artemia fed daily with dead LVS3 and yeast cell strains 

harvested in the stationary growth phase (treated or untreated with 2ME). The yeast cells constituted 
10% of the total AFDW supplied (287 µg/FT). The challeng test was performed with Vibrio 
campbellii (VC) added at day 3. Each feed was tested in four replicates. TN means treatment 
number. RPS means relative percentage survival obtained in each treatment group (comparing the 
survival in the challenged treatment with the respective unchallenged (control)). The total amount 
of feed offered is equal to 2870µg AFDW/tube. Means were put together with the standard 
deviation (mean±SD.). Survival in the challenge test was compared directly to the survival of 
unchallenged Artemia. The effect of yeast chemical treatment on Artemia performance was 
demonstrated by comparing the effect of treated yeast cells in respect to untreated yeast cells on 
Artemia survival and growth. Values showing the same superscript letter are not significantly 
different (p>0.05).  

  
 Exp. 3 Survival 

 (%) 
    IL  

(mm) 
TBP 
 (mm/FT) 

TN  Day4 Day 5 Day6 RPS 
(%) 

  

1 dead LVS3+WT10% 83±3abcde 79±3ab 74±3ab 13f 1.5±0.1fgh 20.3±1.1ij 
2 dead LVS3+WT10%+VC 75±4defg 18±6g 10±6g  1.4±0.1gh 2.8±1.6m 
3 dead LVS3+WT-T10% 86±3ab 83±3a 76±3ab 26ef 1.6±0.1efgh 23.8±0.8fghi 
4 dead LVS3+WT-T10%+VC 73±6fgh 25±8fg 20±8efg  1.5±0.1efgh 6.0±2.4m 
         
5 dead LVS3+mnn9 10% 88±3a 83±3a 81±3a 92a  3.0±0.2a 48.0±1.5a 
6 dead LVS3+mnn9 10%+VC 89±3a 75±4ab 74±3ab   2.6±0.2b 38.8±1.3c 
7 dead LVS3+mnn9-T 10% 86±3ab 81±8a 79±5a 89ab  2.8±0.1ab 43.8±2.7ab 
8 dead LVS3+mnn9-T 10%+VC 84±3abcd 74±3ab 70±4abc   2.5±0.1b 35.5±2.1c 
        
9 dead LVS3+mnn6 10% 83±3abcde 78±6ab 71±5ab 21ef  1.5±0.1efgh 21.3±1.4hij 
10 dead LVS3+mnn6 10%+VC 75±4defg 26±5fg 15±4fg   1.4±0.1gh 4.2±1.1m 
11 dead LVS3+mnn6-T 10% 86±3ab 80±4a 78±3ab 18f  1.5±0.1efgh 24.9±0.8fgh 
12 dead LVS3+mnn6-T 10%+VC 75±4defg 23±5fg 14±3fg   1.4±0.2fgh 4.0±0.7m 
        
13 dead LVS3+fks1 10% 79±3bcdefg 74±5ab 70±4abc 20f 1.6±0.1efgh 20.7±1.2hij 
14 dead LVS3+fks1 10%+VC 75±4defg 28±9fg 14±6fg  1.5±0.1gh 3.9±1.8m 
15 dead LVS3+fks1-T 10% 84±3abcd 80±4a 76±3ab 26ef 1.6±0.1efg 24.2±0.8fghi 
16 dead LVS3+fks1-T 10%+VC 78±3bcdefg 28±5fg 20±4efg  1.5±0.1efgh 6.0±1.2m 
        
17 dead LVS3+knr4 10% 84±3abcd 76±3ab 74±3ab 20f 1.5±0.1efgh 22.4±0.8ghi 
18 dead LVS3+knr4 10%+VC 70±4gh 28±5fg 15±4fg  1.4±0.1gh 4.2±1.1m 
19 dead LVS3+knr4-T 10% 85±4abc 78V3ab 75±4ab 15f 1.5±0.1efgh 22.8±1.2fghij 
20 dead LVS3+knr4-T 10%+VC 74±3efg 23±5fg 11±3fg  1.4±0.1fgh 3.2±0.7m 
        
21 dead LVS3+kre6 10% 84±3abcd 80±4a 74±3ab 28ef 1.7±0.1defg 24.4±0.7fghi 
22 dead LVS3+kre6 10%+VC 74±5efg 33±5ef 21±8ef  1.5±0.1efgh 6.4±2.3lm 
23 dead LVS3+kre6-T 10% 88±3a 80±7a 74±6ab 54cd 1.8±0.1cde 26.1±2.2efg 
24 dead LVS3+kre6-T 10%+VC 81±3abcdef 54±4cd 40±4d  1.6±0.1defg 13.1±1.3k 
        
25 dead LVS3+gas1 10% 89±3a 81±5a 76±5ab 41de 1.9±0.1cd 29.2±1.8de 
26 dead LVS3+gas1 10%+VC 76±5cdefg 48±3de 31±5de  1.7±0.1defg 10.3±1.6kl 
27 dead LVS3+gas1-T 10% 89±3a 83±3a 76±3ab 74bc 2.0±0.2c 31.1±1.0d 
28 dead LVS3+gas1-T 10%+VC 79±3bcdefg 65±9bc 56±8c  1.7±0.1defg 18.6±2.5j 
        
29 dead LVS3+chs3 10% 85±4abc 78±3ab 71±3ab 55cd 1.7±0.1defg 23.8±0.8fghi 
30 dead LVS3+chs3 10%+VC 79±3bcdefg 45±7de 39±5d  1.5±0.1efgh 11.8±1.5k 
31 dead LVS3+chs3-T 10% 83±3abcde 81±3a 79±3a 81ab 1.7±0.1def 27.0±0.9def 
32 dead LVS3+chs3-T 10%+VC 78±5bcdefg 69±5abc 64±9bc  1.5±0.1fgh 18.6±2.8j 
        
33 dead LVS3 86±3ab 79±3ab 75±4ab 24ef 1.4±0.1gh 20.9±1.1hij 
34 dead LVS3+VC 63±3h 28±3fg 18±3fg  1.4±0.1gh 4.4±0.8m 
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4. Discussion 
 
In a model suggested by Lampen (1968), in yeast cell wall, mannoprotein molecules are mutually 

linked by phosphodiester bridges between their polysaccharide moieties. The phosphodiester cross-

linking was supposed to form a physical barrier that retains the extracellular mannoprotein enzymes 

invertase, acid phosphatase, and others within the wall structure. Later studies revealed that, not only 

phosphodiester bridges but also disulfide linkages connect mannoprotein molecules through their 

protein moieties (Kidby and Davis, 1970). Farkas (1985) hypothesized that this cross-linking forms a 

barrier to penetration of extracellular glucanase into the internal glucan layer, which is the main 

structural constituent of the cell wall. As β-glucanase activity is detected in the digestive tract of 

Artemia (Coutteau  et al., 1990), a simple chemical treatment with 2ME, breaking disulfide linkages 

between mannoproteins molecules, giving rise to a more open structure in the cell wall (Zlotnik et al., 

1984), possibly facilitates the action of this enzyme on the yeast cell wall. Coutteau et al. (1990) 

reported that chemical treatment with 2ME on xenic baker’s yeast significantly improved Artemia 

growth (as measured by individual length) (but not survival) when applied to exponentially-grown 

wild type yeast (average of 5.00 mm growth after 8 days) in comparison to untreated yeast cells 

(average of 2.93 mm growth after 8 days), but was ineffective in promoting digestion of the stationary-

phase grown yeast cells (average of 2.63 mm growth after 8 days) in comparison to untreated yeast 

cells (average of 2.11 mm after 8 days). In the present study, similar growth was observed when 

Artemia nauplii were fed with stationary-grown and 2ME-treated WT cells. However, in contrary to 

previous results, Artemia survival was significantly improved when fed with 2ME-treated WT cells in 

comparison to untreated yeast cells (Table 4.3, treatment 1 vs 2). 

In the current study, 2ME-yeast cells performed better as feed for Artemia in comparison to untreated 

yeast cells, when considering the total biomass production (TBP). This was due to an improved 

survival, mostly in combination with an improved individual growth (the latter with some exceptions, 

such as WT, knr4 and chs3 strains). However, feeding Artemia with treated mnn9 and gas1 strains did 

not improve the survival or total biomass production of Artemia in comparison to the respective 
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untreated yeast cells (Table 4.3, treatments: 3 vs 4 and 13 vs 14), probably because Artemia 

performance was already high.  

 

When a limited amount of yeast cells were fed (only constituting 10% of the AFDW offered), there 

was no or very little improvement in survival and individual growth of Artemia in between 2ME-

treated or untreated yeast cells. Also, at the survival level there was no difference between strains 

either treated or not. When compared with the individual growth of the WT (treated or not) only mnn9-

fed Artemia performed considerably better. 

Under such a feeding regime the effect of a Vibrio campbellii challenge was investigated. Only with 

three strains (kre6, gas1 and chs3) 2ME-treatment significantly enhanced survival. Hence, with these 

strains the enhanced resistance against VC was not concomitant with a better individual growth 

performance suggesting non-interference of general nutritional effects on the outcome of the 

challenge. 

 

There is little background information available to explain this phenomenon, but apparently the type of 

gene mutations in these strains (kre6, gas1 and chs3) make changes in the yeast cell wall (i.e. changes 

in cell wall scaffolding or composition such as cell wall proteins probably influencing the density of 

disulfide bridges) enabling a positive action of 2ME treatment. This might increase cell wall β-glucans 

(considered to be an immunostimulant) availability to Artemia. Furthermore, it might be possible that 

the quality of β-glucans (e.g. molecular weight, three dimensional structure, type and frequency of 

branches and the ratio of β-1,3-glucans to β-1,6-glucans) is different between various yeast mutants 

used in the present study, which could interfere in glucan functions (Lipke and Ovalle, 1998).   

It has been reported by De Nobel et al. (1994) that the yeast cell-wall mannoproteins can be divided 

into three groups according to the linkages that bind them to the structure of the cell wall: (i) non-

covalently bond, (ii) covalently bond to the structural glucan, and (iii) disulfide bond to other proteins 

that are themselves covalently bond to the structural glucan of the cell wall. The amount of these three 
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groups of mannoproteins might be different in the various yeast strains. Because chemical treatment 

with 2ME presumably only affects the disulfide bonds, its effect must be dependent on the density of 

disulfide-bridges in cell wall-bound proteins present in mannoproteins, which in turn is dependent on 

the amount of mannoproteins. Unfortunately, there are no data available on the effect of the studied 

gene deletions on the density of mannoproteins and their linkage to each other and to glucans. A 

microarray study on altered gene expression in the fks1, gas1, knr4 and mnn9 deletion mutants, 

revealed that among the 300 genes verified, several genes coding for putative cell wall proteins were 

either strongly (e.g. CWP1 and CRH1) or weakly up or down regulated (Lagorce et al., 2003). 

However, no strong correlation was found between the altered expression of those genes and the 2ME 

effect obtained in the VC challenge.  

In conclusion, no negative effect of  yeast  treatment on  Artemia performance was observed in this 

study. It has been shown that some yeast cell wall mutants (especially chs3 and to a minor extent kre6 

and gas1) are predisposed for a beneficial effect of a 2ME treatment with respect to their potential to 

protect Artemia in a Vibrio campbellii challenge. However, the mechanism involved remains to be 

unravelled. 
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The protective effect against Vibrio campbellii in Artemia nauplii by pure β-glucan and 

isogenic yeast cells differing in β-glucan and chitin content operated with a source-dependent 

time lag 

 

Abstract 

In invertebrates the defence system to fight infectious diseases depends mainly on a non-specific or 

innate immune response, contrary to the vertebrate immune system. The use of natural 

immunostimulants that enhance the defence mechanism or the immune response of target organisms 

may be an excellent preventive tool against pathogens. Several strains of baker’s yeast 

Saccharomyces cerevisiae have been found to be good immune enhancers. Previously, it was shown 

that small quantities of the mnn9 yeast cells and/or glucan particles could protect Artemia nauplii 

against the pathogenic bacterium Vibrio campbellii in the gnotobiotic Artemia challenge test. 

Apparently, the higher amount and/or availability of β-glucans and/or chitin present in mnn9 yeast 

strain might play an essential role in such protection. The present study reveals that these 

compounds could only provide protection against the pathogen when they were supplied to Artemia 

well in advance to the challenge (8 to 48h depending the source). Also the putative 

immunostimulant did not have a curative action. Moreover, short-time exposure of Artemia to mnn9 

strain (priming) did not provide protection against the pathogen longer than 2 days. Hence, it is 

hypothesised that the mere stimulation of known biochemical pathways e.g. prophenoloxidase is not 

sufficient to explain the mechanisms involved in the observed immunostimulation obtained by β-

glucans and/or mnn9 yeast in Artemia nauplii. 

 

 

1. Introduction 

Microbial diseases are a major threat to the sustainability of aquaculture, being responsible for 

massive mortalities occurring especially in the early life stages of aquatic organisms (Bachère, 
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2003). In these larval stages, most organisms, including vertebrates, cannot rely on an acquired 

immune system to combat disease, but have to rely on the innate immune system (Arala-Chaves and 

Sequeira, 2000; Kurtz and Franz, 2003; Little and Kraaijeveld, 2004). Infact, fish larvae and 

invertebrates are not equipped with cells that are analogous to antibody producing lymphocytes in 

vertebrates. According to Raa (2000), invertebrates are apparently entirely dependent on non-

specific immune mechanisms to cope with infections, as they lack the specific immunological 

“memory” that is found in fish and warm-blooded animals. Yet, a recent study in the copepod 

Macrocyclops albidus showed that the defense system of this invertebrate species reacted more 

efficiently after a previous encounter with an antigenically similar parasite, implying that a specific 

memory may exist (Kurtz and Franz, 2003). Indeed, many studies have now explicitly shown that 

primary exposure (immunological priming) to pathogens or even micro-organisms cell wall 

components may be prophylactic, providing protection during secondary encounters (Moret and 

Siva-Jothy, 2003). Nowadays, the use of preventive and environment-friendly approaches such as 

probiotics, immunostimulatns, antibacterial peptides and  

quorum sensing systems is becoming increasingly important in aquaculture (Bachère, 2003; Raa, 

2000; Sakai, 1999; Verschuere et al., 2000; Defoirdt et al., 2005; Alabi et al., 1999; Itami et al., 

1998). However, the application of such technologies must be based on thorough understanding of 

the mechanisms involved and the putative consequences. An essential part of that understanding can 

be provided by studies looking in detail at host-microbial interactions. A key experimental approach 

to study these interactions is to first define the functioning of the host in the absence of bacteria and 

then to evaluate the effect of adding a single or defined population of microbes, or certain 

compounds (i.e., under axenic or gnotobiotic conditions) (Teunissen et al., 1998; Anderson, 1992; 

Sung et al., 1996). Marques et al. (2004a) have recently developed and validated the usefulness of 

an Artemia gnotobiotic test system allowing to study the effect of food composition as well as the 

host-microbial interaction on survival and growth of Artemia in the presence or absence of a 

pathogen.     
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The use of specific biological compounds (immunostimulants) that enhance immune responses of 

target organisms, rendering animals more resistant to diseases may be an excellent preventive tool 

against pathogens (Anderson, 1992 ).  

Several immunostimulants have been used in vertebrate and invertebrate culture, to induce 

protection against a wide range of diseases: i.e. β-glucans (Sung et al., 1996; Sritunyalucksana et 

al., 1999; Burgents et al., 2004; Misra et al., 2004), chitin (Anderson and Siwicki, 1994; Song and 

Huang, 1999; Wang and Chen, 2005), mannoproteins (Tizard et al., 1989), lipopolysaccharides 

(Takahashi et al., 2000), peptidoglycans (Itami et al., 1998; Boonyaratpalin et al., 1995) and dead 

bacteria (Alabi et al., 1999; Keith et al., 1992; Vici et al., 2000). 

The present study investigates the use of baker's yeast and glucan particles in gnotobiotic Artemia to 

promote the immune system against the pathogenic bacteria Vibrio campbelli. For that purpose, 

commercially available particles of glucans obtained from S. cerevisiae and intact cells of two 

strains of live baker's yeast were offered as feed (under various feeding regimes) to gnotobiotic 

Artemia with the primary aim to study the dynamics of the induction of the protective response by 

these particles.  

 

2. Material and methods 

2.1. Axenic culture of yeast 

Two different strains of baker’s yeast (Saccharomyces cerevisiae) were used as feed for Artemia: 

the wild-type strain (WT) and its mnn9 isogenic mutant which has a null mutation resulting mainly 

in a lower concentration of protein-bound mannose in the outer layer of the cell wall (Marques et 

al., 2004b). Both strains were provided by EUROSCARF (University of Frankfurt, Germany). 

Yeasts cultures were performed according to procedures previously described by Marques et al. 

(2004b) using minimal Yeast Nitrogen Base medium (YNB) to culture mnn9 yeast (mnn9-YNB) 

and a complete Yeast Extract Peptone Dextrose medium (YEPD) to culture WT yeast (WT-YEPD). 

The WT strain was harvested by centrifugation (± 800 × g for 10min) in the stationary growth phase 

(after 3 days;”stat.yeast”) while mnn9 yeast was harvested in the exponential growth phase (after 20 
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h; “exp.yeast”). This results typically in a cell-wall composition of 1.2% chitin, 47.3% mannose and 

51.5 % glucans in the WT yeast, while the mnn9 yeast mutant contained 8.7% chitin, 16.3% 

mannose and 75.0 % glucans (Marques et al., 2004a).  

All handling was performed in a laminar flow hood and all necessary tools were previously 

autoclaved at 120 °C for 20 min to ensure sterility. Yeasts were resuspended in filtered and 

autoclaved seawater (FASW, 0.2 µm) and their densities were determined by measuring twice the 

cell concentration, using a Bürker haemocytometer. Suspensions were stored at 4 °C and provided 

to Artemia until the end of each experiment. The following two feeds were chosen because of the 

protection they provide against pathogenic bacteria: no protection (WT yeast) and protection (mnn9 

yeast) (Marques et al., 2005).  

 

2.2. Bacterial strains and growth conditions 

Two bacterial strains were used, i.e. Aeromonas hydrophila strain LVS3 (Marques et al., 2005; 

Soto-Rodriguez et al., 2003; Gomez-Gil et al., 2004) for its positive effect on Artemia performance 

when fed at sub-optimal concentration and Vibrio campbellii strain LMG21363 (VC) for its 

pathogenic effect towards Artemia and shrimp (Soto-Rodriguez et al., 2003; Gomez-Gil et al., 

2004; Coutteau et al., 1990; Aguilar-Uscanga and François, 20003). The two bacterial strains were 

cultured and harvested according to procedures described by Marques et al. (2005). Bacteria were 

resuspended in FASW and their densities determined by spectrophotometry (OD550 ),  assuming that 

an optical density of 1.000 corresponds to 1.2×109 cells/ml, according to the McFarland standard 

(Biomerieux, Marcy l’Etoile, France). At day 3, challenge tests were performed with live VC, i.e 

the pathogen was added to each replicate at a density of 5 × 106  cells/ml. Dead LVS3 was provided 

to Artemia using aliquots of autoclaved (120°C for 20 min)  and centrifuged-concentrated bacteria. 

After autoclaving, bacteria were plated to check if they were effectively killed by this method 

(Marques et al., 2004a). Dead and live bacterial suspensions were stored at 4°C until the end of 

each experiment. 

 



Chapter 5 

 131 

2.3. Artemia gnotobiotic culture  

Experiments were performed with Artemia franciscana cysts, originating from Great Salt Lake, 

Utah- USA (EG ® type, INVE Aquaculture, Belgium). Bacteria-free cysts and nauplii were obtained 

using the procedures described by Sorgeloos et al. (1986) and Marques et al. (2004a). After 

hatching, 20 axenic nauplii (Instar ΙΙ) were transferred by pipette to Falcon tubes containing 30 ml 

FASW as well as the amount of feed scheduled for day 1 (see further for feeding schedule). The 

daily feeding schedule was adopted from Coutteau et al. (1990) and Marques et al. (2004a) and was 

intended to provide ad libitum rations but avoiding excessive feeding in order not to affect the water 

quality in the test tubes. The total AFDW of yeast and bacteria added to Artemia in experiments 1, 2 

and 3 is presented in Table 5.1. In experiment 4, nauplii were fed with WT and/ or mnn9 yeast cells 

(only for 8 h) with the amount of feed scheduled for day 1 (adopted from Coutteau et al. (1990) in 

combination with dead LVS3 at a density of 107 cells/ml/day. Falcon tubes were placed on a 

rotating rod (4 cycles per min), exposed to constant incandescent light (41µEm-2) at 28°C. Tubes 

were transferred once per day to the laminar flow for feeding.  
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Table 5.1 Ash free dry weight (AFDW) of food (Y1 = wild type yeast; Y2 = mnn9 yeast) and dead bacteria (DB= dead LVS3) expressed in 
µg/Falcon tube (µg/FT), supplied to Artemia in experiments 1-3. a) corresponds to the control treatment: WT+LVS3. b) corresponds 
to the treatment: WT+LVS3+mnn9 10%. 

 
                                                                                                                                                                                                          Total AFDW                   General total AFDW  
                            Day1                        Day2                              Day3                           Day4                         Day5                       offered (µg/FT)                       offered (µg/FT) 
                   Y1     DB    Y2         Y1     DB       Y2           Y1     DB      Y2        Y1      DB      Y2       Y1      DB      Y2           Y1        DB       Y2                                 
Exp 1-3:           
a)                 90     90       0           180   180      0              180    180       0          270     270      0          360     360     0           1060     1060       0                                      2120 
 
b)                 79     79       22         158   158      44            158    158     44         219     219      62        316     316     88          930       930       260                                  2120 
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2.4. Method used to verify axenity 

Axenity of feed, decapsulated cysts and Artemia cultures was checked at the end of each experiment 

using a combination of plating (MA) and live counting (using tetrazolium salt MTT staining) 

following the procedure described by Marques et al. (2004a). In challenge treatments, the axenity of 

Artemia culture was always checked before challenge using the same methods. Contaminated 

culture tubes were not considered for further analysis and the treatment was repeated.  

 

2.5. Glucan particles  

A suspension of glucan particles was prepared and offered to Artemia nauplii according to a 

procedure described by Marques et al. (2006). For that purpose, pure insoluble glucan particles 

obtained from the baker's yeast Saccharomyces cerevisiae (Sigma, 100 mg) were aseptically 

transferred to sterile 50 ml Falcon tubes and homogeneously suspended in FASW. Contaminations 

were checked by plating the suspension on Marine Agar (100 μl, n = 2). Absence of bacterial 

growth was monitored after incubating the plates for 5 days at 28 °C. No bacterial growth was 

detected on marine agar after the incubation period. An optical laser particle size analyser 

(Mastersizer MSX-17, Malvern Instruments Ltd., Malvern, Works, UK; resolution 0.05–900 μm) 

was used to determine the diameter of the glucan particles present in the suspension, using the 

software Malvern Mastersizer S version 2.19® (Malvern Instruments Ltd., Malvern, Works, UK). 

Only 12.11% of the particles had a diameter lower than 50 μm (which is considered to be the upper 

limit for possible uptake by Artemia). This amount of glucan was calculated based on the feeding 

regime for WT yeast as published by Marques et al. (2004a, 2005) taking into account that these 

WT yeast cells contain 51.5% glucan in their cell wall. In order to provide 130 μg/tube or 

26 μg/tube/day of ingestible glucan it was necessary to provide ±1 mg/tube or ±200 μg/tube/day of 

glucan. The suspension of glucans was stored at 4 °C until the end of the experiment being provided 

daily in equal portions per day to Artemia (26 μg/tube/day). 
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2.6. Experimental design  

The experimental design for the 4 culture tests is schematized in Fig. 5.1 and 5.2. In experiment 1, 

small amounts of glucan particles (±200 μg/tube/day) or mnn9 yeast cells (10% of the total amount 

of food (in AFDW), offered in equal parts per day, in order to avoid the possibility that those yeast 

cells could be used as major feed source by Artemia) were daily added as food to the Artemia using 

a combination of WT yeast and dead LVS 3 (WT + LVS3). At day 3, challenge tests were 

performed by adding VC to each replicate at a concentration of approximately 5 × 106 cells/ml.  
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Fig. 5.1 Experimental design of the experiments (Exp) 1 to 4 performed. Legend: a-m) corresponds to the treatments performed; F- feed 
provided (mixture of WT yeast and dead LVS3); G – glucan particles (added at different time intervals); P – pathogen (Vibrio 
campbellii), added on day 3 in Exp 1-3 and 8 hours after start feeding in Exp 4); Y2 – mnn9 yeast cell (added at10% of AFDW at 
different periods in Exp 1-3); NF – means no feed added; DB – dead bacterium LVS3; Y1 – WT yeast (added only for 8 hours). 

 
  Day 1 

Start 
Day 2 Day 3 Day 4 Day 5 Day 6 

Harvest 
Exp     
1-3  

 a) F F F F F  

  b) F F F+P F F  

  c)  F+G  F+G F+G F+G F+G  

  d)  F+G F+G F+G+P F+G F+G  

  e)  F F+Y2 F+Y2 F+Y2 F+Y2  

  f)  F F+Y2 F+Y2+P F+Y2 F+Y2  

Exp     
4 

 g)  NF NF Harvest    

  h)  DB DB Harvest    

   i)  DB DB Harvest    

   j)  Y1 (0-8h)+DB+P(8h)   DB Harvest    

  k)  Y1 (0-8h)+DB+P(8h)   DB Harvest    

   l)  Y2 (0-8h)+DB+P(8h)   DB Harvest    

 m)  Y2 (0-8h)+DB+P(8h)   DB Harvest    
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Fig 5.2  Feeding scheme of glucan particles (G) or mnn9 yeast cells (Y) applied in experiment 2 and 3. 

Glucan or mnn9 yeast (added at 10% of total AFDW) were offered to Artemia at various time 
intervals (since 48h before challenge (-48h) until 8h after challenge (+8h)). Nauplii were 
challenged with Vibrio campbellii on day 3. Feeding continued until end of experiment (day5).  

 
 

In experiment 2 and 3, the same feeding regime was applied as in experiment 1, except for the daily 

addition of mnn9 yeast cells and/or glucan particles, which was started at different time points prior 

to the challenge (see Fig. 5.2). As a result, Artemia were daily fed with the major food source (WT 

yeast + dead LVS3) in combination with the mnn9 yeast cells and/or glucan particles added e.g 

from 48h before (-48h) until 8h after (+8h) the challenge test. In experiment 4, Artemia nauplii were 

fed with WT or mnn9 yeast cells (same feeding regime for day1 -adopted from Coutteau et al. 

(1990)- but only for 8h) (see Fig. 5.1). The nauplii were subsequently washed (axenically by serial 

dilution with FASW) to remove all remaining yeast cells and then fed during 2 days with dead 

LVS3 at a density of 107 cells/ml/day. At the same time the nauplli were challenged with VC at a 

density of 5×10 6 cells/ml. 
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2.7. Survival and growth of Artemia 

Survival and growth of the Artemia nauplii were determined   according to the procedures described 

by Marques et al. (2004a). For each treatment the survival percentage was determined daily i.e. the 

number of live Artemia was registered before feeding or adding any bacteria by exposing each 

transparent Falcon tube to an incandescent light without opening the tube as to maintain the 

gnotobiotic environment. At the end of each experiment (day 6 after hatching), live Artemia were 

fixed with lugol’s solution to measure individual length (IL), using a dissecting microscope 

equipped with a drawing mirror, a digital plan measure and the software Artemia 1.0® (courtesy 

Marnix Van Damme). As a criterion that combines both the effects of survival and IL, the total 

biomass production (TBP) was determined according to the following equation: 

TBP (millimeters per Falcon tube - mm/FT) = number of survivors × mean IL 

 

2.8. Statistics 

Values of larval survival (percentage) were arcsin transformed, while values of IL and TBP were 

logarithmic or square root transformed to satisfy normal distribution and homoscedasticity 

requirements. Differences in survival, IL and TBP of Artemia cultured in different conditions were 

investigated with analysis of variances (ANOVA) and Tukey’s multiple comparison range. All 

statistical analyses were tested at the 0.05 level of probability, using the software SPSS 11.5 for 

Windows. 

 

3. Results 

In experiment 1, Artemia performance was compared to results previously obtained by Marques et 

al.(2006) in order to evaluate reproducibility. In this study similar results were obtained although 

the Artemia performance (mainly survival) in the challenge test was lower than expected (especially 

within glucan treated Artemia). Results presented in Table 5.2 indicate that unchallenged nauplii fed 

soley with a mixture of dead LVS3 and WT yeast survived until day 6 with low total biomass 

production (TBP). The addition of glucans to unchallenged Artemia fed with a combination of dead 
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LVS3 and WT did not improve Artemia performance. Yet, the addition of 10% of mmn9 to 

unchallenged and to nauplii fed with a mixture of dead LVS3 and WT yeast significantly improved 

TBP in comparison to nauplii fed only the combination of dead LVS3 and WT yeast, mainly as a 

result of improved growth (individual length). Nauplii challenged with VC and only fed with the 

mixture (Table 5.2, treatment 2) presented significantly lower TBP in comparison to unchallenged 

nauplii (Table 5.2, treatment 1) because of a significant drop in survival. Yet, significantly higher 

survival rates and TBP were obtained when glucan or 10% of mnn9 yeast were provided to 

challenged nauplii in comparison to challenged nauplii not supplied with theses products (Table 5.2 

treatment 4 and 6 vs treatment 2).  
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  A    B   

TN 

 

Experiment 1 Survival (%) IL (mm) TBP (mm/FT)  Survival (%) IL (mm) TBP (mm/FT) 

1 WT+ dead LVS3  
72 ± 8bc  1.86 ± 0.26c  26.78 ± 2.44bc   64 ±8bc  1.70 ± 0.22c  21.76 ± 2.32c  

2 WT+ dead LVS3+VC D3  
8 ± 3d  1.48 ± 0.20cd  2.37 ± 1.86d   14 ± 4e  1.50 ± 0.32cd  4.20 ± 0.55e

   

   

3 WT+ dead LVS3+ mnn910%  
80 ± 6ab  2.50 ± 0.46a  40.22 ± 5.24a   72 ± 8ab  2.63 ± 0.38a  37.87 ± 3.94a  

4 

 

WT+ dead LVS3+ mnn910% +VC D3  
68 ± 4bc  2.44 ± 0.22ab  33.16 ± 2.36ab   64 ± 5bc  2.56 ± 0.43ab  32.75 ± 3.20ab  

5 WT+ dead LVS3+ G  
70 ± 8ab  1.32 ± 0.36cd 18.45 ± 2.88cd  65 ± 4bc 1.40 ± 0.38cd 18.14 ± 2.35cd 

6 WT+ dead LVS3+ G +VC D3 60 ± 5bc  1.39 ± 0.22cd 16.64 ± 2.32e  57 ± 6cd  1.28 ± 0.31cde 14.56 ± 2.94d 
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In experiment 2 and 3, the dynamics of induction of the protective effect of glucan and/or mnn9 

yeast on Artemia in a challenge test was studied. The results presented in Table 5.3 show that in 

order to be able to induce optimum protection against the pathogen it was necessary to expose 

Artemia to glucan at least 48h prior to challenge (see also Fig. 5.3), while mnn9 yeast cells could 

provide optimum protection when included in the feed at least 8h before challenge (Table 5.4: 

treatment 5 and 6) (see also Fig. 5.4). The results indicate that any shorter exposure to glucan and/or 

mnn9 yeast resulted in significantly lower TBP of Artemia in the VC challenge test due to reduced 

survival and IL (e.g. in mnn9 treatments) or mainly due to reduced survival (e.g. in glucan 

treatments) in comparison to nauplii fed with these compounds for sufficiently long periods 

(treatment 3 vs treatment 4, 6, 8, 10, 12 and 14 in Table 5.3 and treatment 3 and 5 vs treatment 8, 

10, 12, 14, 16 and 18 in Table 5.4).  
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TN 
 

Experiment 2 Survival (%) IL (mm) TBP (mm/FT) Survival (%) IL (mm) TBP (mm/FT) 

1 WT+dead LVS3 66 ± 6bc 1.80 ± 0.14a 23.78 ± 2.44a 68 ± 9a 1.78 ± 0.08a 23.96 ± 2.85a 

2 WT+dead LVS3+VC D3 10 ± 4f 1.39 ± 0.09cd 2.77 ± 1.18f 11 ± 3c 1.34 ± 0.27de 2.99 ± 0.76de 

3 WT+dead LVS3+ G (-48h)  63 ± 

10bc  

1.37 ± 0.06cd 17.10 ± 2.15ab • 55 ± 7a 1.31 ± 0.80de 14.48 ± 2.67ab 

4 WT+dead LVS3+ G (-48h) +VC D3 56 ± 5c  1.36 ± 0.03cd 15.26 ± 1.47bc 53 ± 6a  1.22 ± 0.11e 12.92 ± 2.51b 

5 WT+dead LVS3+ G (-24h) 70 ±4ab 1.58 ± 0.10abc 22.12 ± 2.49ab 60 ±9a 1.45 ± 0.04cde 17.33 ± 2.28ab 

6 WT+dead LVS3+ G (-24h) +VC D3 40 ±4d 1.31 ± 0.10d 10.50 ± 1.37cd 28 ±3b 1.32 ± 0.06e 7.28 ± 0.93c 

7 WT+dead LVS3+ G (-16h) 76 ± 3a 1.77 ± 0.03a 26.92 ± 1.06a 55 ± 7a 1.56 ± 0.04abc 17.55 ± 2.26ab 

8 WT+dead LVS3+ G (-16h) +VC D3 34 ± 3de 1.41 ± 0.19bcd 9.61 ± 1.98de 29 ± 6b 1.26 ± 0.13de 7.21 ± 1.69 c 

9 WT+dead LVS3+ G (-8h) 74 ± 8ab 1.78 ±0.12a 26.26 ± 3.97a 59 ± 8a 1.68 ±0.06ab 19.77 ± 2.85ab 

10 WT+dead LVS3+ G (-8h) +VC D3 24 ± 5e 1.33 ±0.14cd 6.37 ± 1.94e 24 ± 5b 1.46 ±0.17bcd 7.06 ± 2.29 c 

11 WT+dead LVS3+ G (-4h) 70 ± 3ab 1.75 ± 0.04a 24.47 ± 1.58a 66 ± 5a 1.74 ± 0.08a 23.08 ± 1.64a 

12 WT+dead LVS3+ G (-4h) +VC D3 25 ± 4e 1.40 ± 0.04bcd 7.01 ± 1.36de 19 ± 3bc 1.40 ± 0.14cde 5.20 ± 0.43c 

13 WT+dead LVS3+ G (-2h) 69 ± 3abc 1.64 ± 0.01ab 22.58 ± 0.78ab 63 ± 10a 1.82 ± 0.10a 22.83 ± 4.61a 

14 
 
 

WT+dead LVS3+ G (-2h) +VC D3 25 ± 7e  1.36 ± 0.15cd 6.90 ± 2.50e 11 ± 5c  1.44 ± 0.10bcde 3.20 ± 1.32 d 
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Fig. 5.3 Histogram of the average Artemia survival, individual length and total biomass production 

(mm/FT) when fed various feed combinations on day 6. Particles of glucan (G) were supplied 
daily at different time intervals (before challenge test (“-h”) together with a combination of WT 
yeast and dead LVS3 (WT+LVS3). As a control, nauplii were not supplied with glucan (treatment 
A). A) corresponds to treatment: WT+dead LVS3. B) corresponds to treatment: WT+dead 
LVS3+G (-48h). C) corresponds to treatment: WT+dead LVS3+G (-24h). D) corresponds to 
treatment: WT+dead LVS3+G(-16h). E) corresponds to treatment: WT+dead LVS3+G(-8h). F) 
corresponds to WT+dead LVS3+G (-4h). Grey bars represent results of unchallenged nauplii while 
black bars reperesents nauplii challenged with Vibrio campbellii (VC) added on day 3 . Asterisks 
mean no significant differences between two bars (p Tukey>0.05).  

*

0
10
20
30
40
50
60
70
80
90

A B C D E F

Treatments

Su
rv

iv
al

 (%
)

no VC
VC



Chapter 5 

 144 

 
T

ab
le

 5
.4

 E
xp

er
im

en
t 3

- M
ea

n 
su

rv
iv

al
 (%

), 
in

di
vi

du
al

 le
ng

th
 (I

L)
 (m

m
) a

nd
 to

ta
l b

io
m

as
s 

pr
od

uc
tio

n 
(m

m
 p

er
 F

al
co

n 
tu

be
- F

T)
 o

f A
rt

em
ia

 fe
d 

va
rio

us
 

fe
ed

 c
om

bi
na

tio
ns

 o
n 

da
y 

6.
 T

he
 m

nn
9 

ye
as

t c
el

ls
 (c

on
st

itu
te

d 
10

%
 o

f t
he

 to
ta

l A
FD

W
) w

er
e 

su
pp

lie
d 

da
ily

 a
t d

iff
er

en
t t

im
e 

in
te

rv
al

s t
og

et
he

r 
w

ith
 a

 c
om

bi
na

tio
n 

of
 W

T 
ye

as
t a

nd
 d

ea
d 

LV
S3

 (W
T+

LV
S3

). 
A

s 
a 

co
nt

ro
l, 

na
up

lii
 w

er
e 

no
t s

up
pl

ie
d 

w
ith

 m
nn

9 
ye

as
t c

el
ls

. T
he

 c
ha

lle
ng

e 
te

st
 w

as
 p

er
fo

rm
ed

 w
ith

 V
ib

ri
o 

ca
m

pb
el

lii
 (V

C
) a

dd
ed

 o
n 

da
y 

3 
(D

3)
. T

he
 fi

rs
t c

ol
um

n 
on

 th
e 

ta
bl

e 
re

fe
rs

 to
 th

e 
ty

pe
 o

f t
he

 tr
ea

tm
en

t (
se

e 
Fi

g.
 

5.
1 

an
d 

5.
2)

. V
al

ue
s a

re
 p

re
se

nt
ed

 w
ith

 th
e 

re
sp

ec
tiv

e 
st

an
da

rd
 d

ev
ia

tio
n 

(m
ea

n±
SD

). 
V

al
ue

s i
n 

th
e 

sa
m

e 
co

lu
m

n 
sh

ow
in

g 
th

e 
sa

m
e 

su
pe

rs
cr

ip
t 

le
tte

r a
re

 n
ot

 si
gn

ifi
ca

nt
ly

 d
iff

er
en

t (
pT

uk
ey

>0
.0

5)
. T

hi
s e

xp
er

im
en

t w
as

 re
pe

at
ed

 tw
ic

e,
 A

 a
nd

 B
. T

N
 c

or
re

sp
on

ds
 to

 tr
ea

tm
en

t n
um

be
r. 

 

 

 

  
A 
 

   
B 
 

  

TN Experiment 3  Survival (%) IL (mm) TBP (mm/FT) Survival (%) IL (mm) TBP (mm/FT) 

1 WT+dead LVS3  66 ± 6bc      1.80 ± 0.14c      23.78 ± 2.44bc       68 ± 9bc     1.78 ± 0.08cdef    23.96 ± 2.85bcd      

2 WT+dead LVS3+VC D3  10 ± 4ef      1.39 ± 0.09d    2.77 ± 1.18e        11 ± 3ef      1.34 ± 0.27g     2.99 ± 0.76g     
  

3 WT+dead LVS3+ mnn910% (-16h)   75 ± 5ab    2.70 ± 0.36a       42.32 ± 4.80a     79 ± 6ab      2.63 ± 0.26a     44.56 ± 3.26a      
4 WT+dead LVS3+ mnn910% (-16h) +VC D3    66 ± 6bc      2.25 ± 0.12c        28.84 ± 2.8ab      62 ± 4bc       2.32 ± 0.22ab      26.16 ± 2.18bcd   

   
5 WT+dead LVS3+ mnn910% (-8h) 79 ±5ab 2.74 ± 0.30a 43.28 ± 6.56a 75 ±4ab 2.66 ± 0.05a 39.95 ± 2.67ab 
6 WT+dead LVS3+ mnn910% (-8h) +VC D3 61 ±5bc 2.19 ± 0.07bc 26.79 ± 2.10ab 64 ±5bc 2.03 ± 0.19bcd 25.99 ± 3.73bcd 

 
7 WT+dead LVS3+ mnn910% (-4h) 76 ± 5ab 2.81 ± 0.28a 42.86 ± 5.68a 80 ± 4a 2.66 ± 0.12a 42.48 ± 2.88a 
8 WT+dead LVS3+ mnn910% (-4h) +VC D3 53 ± 6cd 2.11 ± 0.16c 22.26 ± 4.16bc 58 ± 6c 1.93 ± 0.08bcde 22.18 ± 2.03d 

 
9 WT+dead LVS3+ mnn910% (-2h) 78 ± 6ab 2.78 ±0.15a 43.11 ± 4.62a 80 ± 4a 2.68 ±0.12a 42.86 ± 2.58a 

10 WT+dead LVS3+ mnn910% (-2h) +VC D3 54 ± 8c 2.07 ±0.19c 22.36 ± 4.52bc 55 ± 4c 2.10 ±0.12bc 23.00 ± 0.45cd 
 

11 WT+dead LVS3+ mnn910% (0h) 80 ± 7a 2.59 ± 0.09ab 41.29 ± 2.56a 78 ± 6ab 2.10 ± 0.08bc 32.60 ± 3.09abcd 

12 WT+dead LVS3+ mnn910% (0h) +VC D3 34 ± 6de 1.94 ± 0.19c 12.91 ± 1.67cd 30 ± 4d 1.69 ± 0.21cdef 10.10 ± 1.85e 
 

13 WT+dead LVS3+ mnn910% (+2h) 80 ± 7a 2.58 ± 0.07ab 41.21 ± 3.98a 79 ± 5a 2.21 ± 0.10ab 34.84 ± 3.12abcd 

14 WT+dead LVS3+ mnn910% (+2h) +VC D3 25 ± 9e  1.97 ± 0.08c 9.96 ± 4.01d 21 ± 5d  1.57 ± 0.12ef 6.74 ± 1.96ef 
 

15 WT+dead LVS3+ mnn910% (+4h) 79 ± 5a 2.55 ± 0.16ab 39.98 ± 1.04a 80 ± 7a 2.22 ± 0.08ab 35.49 ± 2.30abc 

16 WT+dead LVS3+ mnn910% (+4h) +VC D3 24 ± 9e  1.84 ± 0.17c 8.88 ± 3.84d 21 ± 6d  1.53 ± 0.30f 6.71 ± 2.94f 
 

17 WT+dead LVS3+ mnn910% (+8h) 76 ± 6ab 2.68 ± 0.09a 40.82 ± 2.62a 78 ± 6ab 2.18 ± 0.10ab 33.71 ± 2.56abcd 

18 

 

 

WT+dead LVS3+ mnn910% (+8h) +VC D3 26 ± 9e 1.85 ± 0.04c 9.73 ± 3.22d 20 ± 4d 1.67 ± 0.25def 6.64 ± 1.49ef 
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Fig. 5.4  Histogram of the average Artemia survival, individual length and total biomass production 

(mm/FT, and respective standard deviation) when fed various feed combinations on day 6. The 
mnn9 yeast cells (constituted 10% of the total AFDW) were supplied daily at different time 
intervals (either before (“-h”) or after (“+h”) challenge test) together with a combination of WT 
yeast and dead LVS3 (WT+LVS3). As a control, nauplii were not supplied with mnn9 yeast cells. 
A) corresponds to treatment: WT+dead LVS3. B) corresponds to treatment: WT+dead LVS3+ 
mnn9 10% (-16h). C) corresponds to treatment: WT+dead LVS3+ mnn9 10% (-8h). D) corresponds 
to treatment: WT+dead LVS3+ mnn9 10% (-4h). E) corresponds to treatment: WT+dead LVS3 
mnn9 10% (-2h). F) corresponds to WT+dead LVS3 mnn9 10% (0h). G) corresponds to WT+dead 
LVS3 mnn9 10% (+2h). H) corresponds to WT+dead LVS3 mnn9 10% (+4h). Grey bars represent 
results of unchallenged nauplii while black bars reperesents nauplii challenged with Vibrio 
campbellii (VC) added on day 3. Asterisks mean no significant differences between two bars (p 
Tukey>0.05). 
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In experiment 4, the protective effect of short-term exposure (8h priming) of Artemia to WT and 

mnn9 yeast cells was studied (see Table 5.5). In the absence of a challenge, a short-term exposure to 

yeast cells had a strong beneficial effect on survival, lasting until day 3 (Table 5.5: treatment 4 and 

6), while nauplii challenged immediately after the priming displayed some beneficial effect of the 

priming on day 2, irrespective of the genetic background of the yeast offered (Table 5.5: treatment 5 

and 7). The priming effect was statistically stronger with mnn9 yeast than with WT cells (Table 5.5: 

treatment 7 versus treatment 5). On day 3, no nauplii survived in the LVS3 control treatment  

(Table 5.5: treatment 3) nor in the WT priming experiment, while in the mnn9 experiment a very 

small number of individuals survived. 

 

Table 5.5 Experiment 4 - Mean daily survival (%) of Artemia fed with yeast cells (WT and mnn9) only for 
8 h. The nauplii were subsequently challenged once with VC and fed with dead LVS3 at a 
density of 107 cells/ ml/day during 2 days. As a control, nauplii were only fed with dead LVS3 
during 2 days. Each experiment was repeated twice (A and B). Each feed was tested in four 
replicates. Means were put together with the standard deviation (mean±SD.). Values in the same 
column showing the same superscript letter are not significantly different (p Tukey>0.05). TN 
corresponds to treatment number. 

 
         Survival (%) A      Survival (%) B 

Treatments Priming 
(0-8h) 

Feed 
(8-48h) 

Challenge   
(8h)  

      Day 2 
           

    Day 3 
 

Day 2 
 

Day 3 
 
1    No feed 

 
- 

 
- 

 
- 

 
  26 ± 6d 

   
        0c 

 
31± 5e 

 
0d 

2    LVS 3 - LVS 3 -    86 ± 3a    25 ± 4b  81± 5b 30 ± 4b 
3    LVS 3+live VC - LVS 3 VC    24 ± 3d         0 c 20 ± 4f 0d 
4    WT+LVS 3 WT LVS 3 -    88 ± 3a    41 ± 6b  84 ± 3b 38 ± 5b 
5    WT+LVS 3+live VC WT LVS 3 VC    56 ± 5c         0 c  54 ± 5d 0d 
6    mnn9+LVS 3 mnn9 LVS 3 -    90 ± 4a    61 ± 10a  94 ± 3a  66 ± 5a  
7    mnn9+LVS 3+liveVC mnn9 LVS 3 VC    75 ± 4b      4 ± 3c    70 ± 4c  8 ± 3c 

 
 

4. Discussion 

Data presented in the first experiment (Table 5.2), confirmed the results from Marques et al. (2006) 

that daily addition of small amounts of mnn9 yeast and/or pure glucan to a poor performing feed 

protects Artemia against the pathogenic VC while Artemia not supplemented with these compounds 

can not resist this pathogen. These data also suggest that glucan particles in an axenic environment 

do not have a nutritional value (see Table 5.2, line 1 vs. 5, survival and IL are not statistically 

different). Although the exact mechanism involved in such protection is not clear, β-glucans and 
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chitin (present in high concentrations in the mnn9 yeast cell wall) have been hypothesized to play 

an important role in the protection of Artemia against pathogenic bacteria. This hypothesis is 

corroborated by Vismara et al. (2004), who obtained a significant increase in Artemia resistance 

against stress conditions, by the daily administering to the Artemia nauplii of a Euglena gracilis 

mutant rich in β-glucans. 

Although is not clear in Artemia, Cheng et al. (2005) demonstrated that β-glucans provided to other 

crustaceans, such as shrimp, seem to bind specific recognition proteins present in haemocytes. 

Circulating haemocytes play extremely important roles in the crustacean immune system (Smith et 

al., 2003). Once β-glucans are detected, haemocytes are activated and attempt to neutralize or 

eliminate infective agents, by directly sequestrating and killing infectious agents through 

phagocytosis and encapsulation, or by releasing a battery of potent bioactive molecules that assist 

phagocytosis, such as microbicidal proteins (e.g. lectins), agglutinins, hydrolytic enzymes and 

antimicrobial peptides stored in these cells (Smith and Chisholm, 2001; Soderhall and Cerenius, 

1998). In the mnn9 mutant, the yeast cell-wall composition is considerably changed i.e increased 

cell-wall bound chitin and glucans in combination with reduced mannoproteins (Marques et al., 

2004a). These changes increase yeast digestibility to Artemia, thus allowing nauplii to perform 

better in comparison to WT yeast (Marques et al., 2004a). The second set of experiments 

investigated the dynamics of the induction of the protecting effect. In unchallenged nauplii offered 

mnn9 yeast (under various feeding periods) the TBP was significantly higher  (mostly due to higher 

IL) in comparison to nauplii deprived of these yeast cells. Interestingly, there was no significant 

difference in TBP among these treatments although they were fed with mnn9 yeast for different 

periods. However, the nauplii, which received mnn9 yeast for at least 8 h before challenge, could 

withstand the pathogen.  In these treatments, the performance of Artemia decreased gradually (due 

to both lower survival and lower IL) as they were exposed for a shorter time to mnn9 yeast cells. 

However, in all treatments (either challenged or not) mnn9 yeast generally improved nauplii IL. 

This suggests that mnn9 yeast cells when supplied even in small quantities seem to fulfill a double 

function, as they can boost IL of Artemia as well as protect them in a challenge test. In contrast to 
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mnn9, pure glucan was not able to boost the IL of Artemia nauplii in a significant way (as also 

observed in experiment 1) i.e. it could only protect Artemia against the pathogen when offered for at 

least 48h prior to challenge (since start feeding Artemia on day 1). Therefore, mnn9 yeast could 

induce protection in Artemia against the pathogen faster compared to pure glucan particles. Two 

possible mechanisms can be formulated to explain the observed differences. Possibly the β-glucans 

in mnn9 cells are more appropriate than pure β-glucan (e.g. the ratio of β-1,3 and β-1,6-glucan, the 

molecular weight, the dimensional structure, type and frequency of branches) (Ai et al., 2007). 

Furthermore, apart from β-glucans, mnn9 yeast cells contain chitin, which has been proven to 

stimulate the immune system in crustaceans (Anderson and Siwicki, 1994; Song and Huang, 1999) 

and thus may work in synergism with β-glucans. In addition to its immunostimulatory nature, mnn9 

cells might have a nutritional effect as well, which can stimulate/activate the digestive physiology 

(enzyme secretion) in the same way as has been described earlier in European sea bass 

Dicentrarchus labrax supplied with microalgae (Cahu et al., 1998) or baker's yeast (Tovar et al., 

2002). In the present study neither mnn9 nor pure glucan showed any curative effect when supplied 

after challenge.  

In the final set of experiments, we tested whether exposing Artemia for a short-term (8h priming) to 

WT or mnn9 yeast cells would be sufficient for their protection against pathogenic bacteria. After 

priming, the nauplii only received dead bacteria (LVS3) as feed, which is known not to protect 

Artemia against V. campbellii. Although the priming effect was significantly stronger with mnn9 

yeast than with the WT cell, this effect was short-lived and disappeared very quickly one day after 

challenge. To date, no evidence for adaptive immune system has been found in invertebrate or 

lower vertebrates (lampreys and hagfish), although there is some evidence in invertebrates, that 

priming the innate immune system can have a medium to long-term protective effect (Little and 

Kraaijeveld, 2004). Previous priming studies (Moret and Siva-Jothy, 2003) with the mealworm 

beetle, Tenebrio molitor, revealed a long-term protection (50 days) against the pathogenic fungus 

Metarhizium anisopliae after priming the innate immune system with lipopolysaccharides (LPS). 

Although the compound used in the present study is different, both LPS and glucans are 
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immunostimulants for which the innate immune system has specific receptors (Janeway and 

Medzhitov, 2002), resulting in a general antimicrobial response (Beutler, 2004). The actual 

mechanism that maintains high level of antimicrobial activity during long-lasting immune responses 

in invertebrates (e.g. insects) is as yet not known and such a persistent antimicrobial activity may 

either be due to a continuous synthesis of antimicrobial peptides in the haemolymph or to a slow 

turnover of these peptides when produced (Moret and Siva-Jothy, 2003). According to Vierstraete 

(2004) the type of priming agent is very important to trigger the immune system in invertebrates. 

They identified different protein profiles in haemolymph of Drosophila 25 min after priming with 

Micrococcus luteus, Saccharomyces cerevisiae and lipopolysaccharides (LPS), suggesting that the 

interaction between invertebrates (and also vertebrate hosts) and their pathogens may be extremely 

specific (Kurtz and Franz, 2003; Little et al., 2003; Decaestecker et al., 2003; Witteveldt et al., 

2004). Hence, the priming of the innate immune system of invertebrates could depend on several 

factors such as the specificity and quantity of a compound used as well as the animal tested. 

Biochemical data will be needed to provide evidence that the increased β-glucan and/or chitin 

content of the mnn9 strain is responsible for this short-lived priming effect. 

Summarizing, mnn9 yeast and pure glucan could provide protection in Artemia against Vibrio 

campbelli when supplied well ahead of the challenge. The protection by mnn9 is short-lived when 

they are used to prime the immune system. The mechanism involved in such protection is not yet 

clear but two hypotheses can be put forward: if Artemia nauplii which may hatch with a sufficient 

amount of biochemically efficient haemocytes to fight diseases, one may expect an immediate 

response by the immunostimulants and even priming could be sufficient to overcome diseases. 

Alternatively, it is possible that Artemia nauplii may hatch without haemocytes and consequently 

with an under developed immune-e system. Unfortunately, we know very little about the ontogeny 

of the immune system in invertebrates (in Artemia, especially) as in general their small size 

precludes direct study. Published work to date has focused on the development of the immune 

system in only bivalve molluscs and echinoderms (Dyrynda et al., 1995). It cannot be assumed that 

juveniles exhibit the same responses as adults, or that the expression of immune proteins occurs to 
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the same degree. To gain insight into the immune capability of penaeid shrimp during larval 

development, in a period of life when shrimp are particularly susceptible to infection, the expression 

and localization of penaeidin (Litvan-Pen3-1) have been studied in the first larval stages, from 

nauplius V, Zoea I, II, III, to Mysis II, and in post-larvae (Munoz et al., 2003). The results showed 

Litvan-Pen3-1 transcript and peptides are restricted to some haemocytes observed in the Mysis II 

larval stage. This suggests either a low level of transcriptional activity in expressing cells, or a low 

number of expressing cells present in the larvae (Munoz et al., 2003). 

In the marine mussel, Mytilus edulis, the levels of phagocytosis in immature larval haemocytes (e.g. 

in trochophore and veliger cells) was much lower (in both percentage of phagocytic cells and mean 

number of bacteria ingested per cell) in respect to adult mussel haemocytes (Munoz et al., 2003). 

Considering these limited literature data, our results are in more agreement with the second 

hypothesis, which postulates that Artemia nauplii are hatching with an insufficient amount of 

haemocytes or with a poorly functional immune system. Consequently, traces of glucan and mnn9 

yeast are likely triggering the proliferation or the maturation of the haemocytes, justifying the time 

lag between the addition of the immunostimulants and the appearance of the protective effect. 

However, the immune induction obtained by these products in Artemia nauplii may not be 

necessarily similar in more advanced developmental stages such as juvenile or adult Artemia. 

Further studies on the relationship between gene expression and survival of challenged nauplii in 

gnotobiotically-grown Artemia could elucidate in detail the mechanism of action of yeast cells 

and/or specific compounds on the innate immune system.  
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Enhanced disease resistance in Artemia by application of commercial β-glucans 

sources and chitin in a gnotobiotic Artemia challenge test 
 

 

Abstract 

The anti-infectious potential of a selection of putative immunostimulants including six commercial β-

glucans (all extracted from baker’s yeast Saccharomyces cerevisiae except for Laminarin) and chitin 

particles were verified in Artemia nauplii by challenging them under gnotobiotic conditions with the 

pathogen Vibrio campbellii. Under the described experimental conditions, no differential macroscopic 

nutritional effect (e.g. growth) was observed among the products. Significant increased survival was 

observed with β-glucan (Sigma) and Zymosan and to a lesser extent with MacroGard in challenged 

nauplii. A poor correlation was found between survival values of the challenged Artemia and the product 

compositions (such as chitin, mannose and β-glucan content) indicating that the quality of β-glucans (e.g. 

the ratio of β-1,3 and β-1,6-glucan, the molecular weight, the dimensional structure, type and frequency 

of branches), eventually in combination with other unidentified compounds, is more important than the 

amount of product offered. This small-scale testing under gnotobiotic conditions using freshly-hatched 

Artemia nauplii allows for a rapid and simultaneous screening of anti-infectious and/or putative 

immunostimulatory polymers, and should be combined with studies on cellular and humoral immune 

responses in order to gain more quantitative insight into their functional properties.   

 

1. Introduction 

Diseases are still a major constraint to sustainable aquaculture production, especially for the farming of 

invertebrates (Bachére, 2003). According to Raa (2000), invertebrates are apparently entirely dependent 

on non-specific immune mechanisms to cope with infections, as they lack the specific immunological 

“memory” that is found in fish and warm-blooded animals. As a result, it does not seem to make sense to 

vaccinate them against specific diseases. Nowadays, the use of preventive and environment-friendly 
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approaches such as probiotics, immunostimulants, antibacterial peptides and quorum-sensing systems are 

becoming increasingly important in aquaculture (Bachére, 2003; Sakai, 1999; Verschuere et al., 2000; 

Defoirdt et al., 2005). However, the application of such technologies must be based on a thorough 

understanding of the mechanisms involved and the putative consequences. An essential part of that 

understanding can be provided by studies of host-microbial interactions. A key experimental approach to 

study these interactions is to first define the functioning of the host in the absence of bacteria and then to 

evaluate the effect of adding a single or defined population of microbes, or certain compounds i.e. under 

axenic or gnotobiotic conditions (Gordon and Pesti, 1971 ; Marques et al., 2004a,b). Marques et al. 

(2004a) have recently developed and validated the usefulness of an Artemia gnotobiotic test system 

allowing to study the nutritional effect of food composition as well as the host-microbial interaction.  

The use of specific biological compounds (immunostimulants) that enhance immune responses of target 

organisms, rendering animals more resistant to diseases may be an excellent preventive tool against 

pathogens. Several immunostimulants have been used in vertebrate and invertebrate culture, to induce 

protection against a wide range of diseases: i.e. β-glucans (Sung et al., 1996; Sritunyalucksana et al., 

1999; Burgents et al., 2004; Misra et al., 2004), chitin (Anderson and Siwicki, 1994; Song and Huang, 

1999; Wang and Chen, 2005), mannoproteins (Tizard et al., 1989), lipopolysaccharides (Takahashi et al., 

2000), peptidoglycans (Itami et al., 1998; Boonyaratpalin et al., 1995) and dead bacteria (Alabi et al., 

1999; Keith et al., 1992; Vici et al., 2000). 

Nevertheless, rigorous analysis of the results obtained in most experiments reveals that the validity of 

some conclusions with respect to the benefit of immunostimulation is limited, due to mainly poor 

experimental design, to the absence of any statistical analysis and to poor reproducibility of the results 

(Smith et al., 2003). Therefore, Smith et al. (2003) argued that there is an urgent need to provide 

unequivocal evidences of the beneficial effects of immunostimulants using standardized trials under 

controlled rearing conditions, complemented with fundamental research on defence mechanisms. These 

trials could be performed with gnotobiotically-cultured invertebrates (animals cultured in a totally 

controlled microbial environment). 
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The present study aims to verify the putative pathogen-protective effect of some commercial β-glucans 

and chitin particles in a gnotobiotic Artemia challenge test system using the opportunistic pathogenic 

bacterium Vibrio campbellii. 

 

2. Methodology 

2.1. Bacterial strains and growth conditions 

Two bacterial strains were used, i.e. Aeromonas hydrophila strain LVS3 for its positive effect on Artemia 

performance when fed at sub-optimal concentration (Soto-Rodriguez et al., 2003; Gomez-Gil et al., 2004; 

Marques et al., 2005) and Vibrio campbellii strain LMG21363 (VC) for its pathogenic effect towards 

Artemia and shrimp (Marques et al., 2005; Soto-Rodriguez et al., 2003; Gomez-Gil et al., 2004; Coutteau 

et al., 1990). The two bacterial strains were cultured and harvested according to procedures described by 

Marques et al. (2005). Bacteria were resuspended in filtered and autoclaved seawater (FASW, 0.2 µm) 

and their densities determined by spectrophotometry (OD550 ),  assuming that an optical density of 1.000 

corresponds to 1.2×109 cells/ml, according to the McFarland standard (Biomerieux, Marcy l’Etoile, 

France).  Dead LVS3 was fed to Artemia using aliquots of autoclaved bacteria (autoclaving at 120 °C for 

20 min). At day 3, challenge tests were performed with live VC according to a procedure described by 

Soltanian et al. (2007). 

The composition of the products was determined using high performance anionic exchange 

chromatography (HPAEC) (Dionex Bio-LC50 system, Sunnyvalle, USA), according to the 

methodologies described by Dallies et al. (1998).  

 

2.2. Artemia gnotobiotic culture  

Experiments were performed with Artemia franciscana cysts, originating from Great Salt Lake, Utah- 

USA (EG ® type, INVE Aquaculture SA, Dendermonde, Belgium). All manipulation was carried out 

under a lamina flow hood and all necessary tools were previously autoclaved at 120 °C for 20 min. 

Bacteria–free cysts and nauplii were obtained using the procedure described by Sorgeloos et al. (1986) 

and Marques et al. (2004a). After hatching, 20 axenic nauplii (Instar ΙΙ) were transferred to Falcon tubes 
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containing 30 ml of FASW together with the amount of feed scheduled for day 1. The daily feeding 

schedule was adopted from Soltanian et al. (2007) and is intended to provide ad libitum ratios but 

avoiding excessive feeding in order not to affect the water quality in the test tubes. In all experiments the 

total amount of dead LVS3 provided to Artemia was approximately 10.5 × 109 cells/FT (distributed in 5 

daily feeding portions; daily fraction (in %) 9:17:17:23:34).  Each treatment consisted of four Falcon 

tubes (replicates), placed on a rotating rod at 4 cycles per min and exposed to constant incandescent light 

(± 41µEm-2) at 28°C. Tubes were being transferred to the laminar flow just once per day for feeding.  

 

2.3. Method used to verify axenity 

Axenity of feed, decapsulated cysts and Artemia cultures was checked at the end of each experiment 

using a combination of plating (Marine Agar) and live counting (using tetrazolium salt MTT (-3-(4,5-

dimethylthazol-2, 5-diphenyl tetrazolium bromide) (Sigma, 0.5 % w/v)) staining following the procedure 

described by Marques et al. (2006). In challenge treatments, the axenity of Artemia culture was always 

checked before challenge using the same methods. Contaminated culture tubes were not considered for 

further analysis and the treatment was repeated.  

 

2.4 Particles of glucans and chitin 

Insoluble particles of chitin (Sigma, from crab shell, 1g) and five commercial β-glucans, namely, Biorigin 

(Betamune, Brazil), MacroGard (MacroGard®, Biotec-Mackzymal, Norway), Immunowall (Brazil), 

Zymosan (Sigma, 1g) and the β-glucan (Sigma, 100mg) (all obtained from baker’s yeast Saccharomyces 

cerevisiae) in addition to a soluble β-glucan (Laminarin, Sigma, 500 mg) extracted from Laminaria 

digitata, were tested in the Artemia gnotobiotic challenge test system to verify their potential to protect 

Artemia nauplii against the pathogenic VC. Non-sterile compounds (Biorigin, Immunowall and 

MacroGard) were suspended in absolute ethanol (100%) in sterile 50 ml Falcon tubes with loose cap and 

put at 28° to dry. Particles were aseptically transferred to sterile 50 ml Falcon tubes and homogeneously 

suspended in FASW. Contaminations were checked by plating the suspension on MA (100µl, n=2). 

Absence of bacterial growth was monitored after incubating plates for 5 days at 28°C. No bacterial 
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growth was detected on marine agar after 5 days of incubation. An optical laser particle size analyser 

(Mastersizer MSX-17, Malvern Instruments Ltd., Malvern, Works, UK; resolution 0.05-900 μm) was 

used to determine the diameter of particles present in the suspension, using the software Malvern 

Mastersizer S version 2.19®. Each product had its specific particle distribution curve. The volume 

percentage of particles, sizing less than 50μm (maximum particle size that can be ingested by Artemia) 

was calculated (Table 6.1, second column). In a classical six day experiment (Marques et al., 2004a), 1.06 

mg AFDW (ash free dry weight) of yeast cells are offered to Artemia per tube. According to Marques et 

al. (2004a), this corresponds on average, depending on the yeast strains, to 213 µg of cell wall material.  

Here it was decided, on an arbitrary basis, to add 128 µg of ingestible product (being 60%). In order to 

provide equal amounts of ingestible particles it was necessary to adjust the feeding regime for each 

product (see legend Table 6.1). The percentage of ingestible (lower than 50 µ) particles in combination 

with total amount of β-glucans offered to Artemia is presented in Table 6.1. 
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Table 6.1 Particle diameter distribution of commercial glucans and chitin offered to Artemia nauplii in 

experiment 1 and 2. Only the particles with the size less than 50µm are considered to be 
ingestible by Artemia nauplii. The amount of particles offered to Artemia was calculated as 
128 µg/5 feedings/% ingestible particles/100. The total amount of ingestible glucan offered 
was calculated as the amount of particles offered × % sugar content/100 × % glucan 
content/100. (For sugar content and glucan content, see Table 1, column 2 and 5 respectively). 

 
Product                    Percentage (%) of particle             Particles offered           Total Dry Weight (DW) of ingestible  
                                    size less than 50 µm                     (µg/tube/day)                  glucan offered (µg/tube/day) 
 
Zymosan                             100                                              26                                             15.7 
 
β-glucan (Sigma)                12.11                                          214                                            13.1 
  
Biorigin                               18                                               145                                            18.2 
 
MacroGard                          74                                               35                                             11.8 
 
Immunowall                        100                                             26                                              5.3 
 
Chitin                                   60                                               21                                               - 
 
Laminarin                         soluble                                          26                                              21.7 
 
 

Experiments in which 3 times as much particles of the respective products were offered, were also 

performed. The suspension of particles was stored at 4°C until the end of the experiment. It was verified 

if the particles in the different commercial preparations could display a differential adhesion of Vibrio 

cells, potentially influencing the number of pathogenic bacterium (VC) ingested by Artemia in the 

challenge test. However, no bacterial adherence to particles was observed when checked under the 

microscope (1000x) over a period of 48h of contact between them (results not shown). 

 
 
 
2.5. Experimental design 

This study comprises 2 experiments and their experimental design is schematised in Fig. 6.1. In 

experiment 1 and 2, Artemia nauplii were fed daily with poor-performing and non-protective dead LVS3 

(a total 10.5×109 cells/Falcon Tube (FT) for 6 days) as a major feed source in combination 

with small amount of   glucans and chitin particles (approximately 2% of total amount of feed offered). 

Glucan and chitin additions were divided in equal parts per day, to avoid the possibility that those 

particles could be used as major feed source by Artemia) (Fig. 6.1).  
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Fig. 6.1 Experimental design of two experiments (Exp) performed. Legend: a)-f) correspond to the 

treatmentsperformed; DB – dead bacteria LVS3; P – pathogen (Vibrio campbellii); G – 
glucans (Zymosan, β-glucan (Sigma), Laminarin, Biorigin, MacroGard and Immunowall); C – 
chitin particles. 

 
 

At day 3, challenge tests were performed with live VC. For that purpose, in a laminar flow hood, the 

pathogen was added to each replicate at a density of 5 × 106 cells/ml. As a control Artemia was only fed 

with the dead LVS3 and challenged (or not) with the pathogen. These experiments were repeated to verify 

the reproducibility of the results.  

 

2.6. Survival and growth of Artemia 

 

The survival percentage was determined daily for each treatment. For this purpose, the number of live 

Artemia was registered before feeding or adding bacteria by counting with the naked eye while exposing 

each transparent Falcon tube to an incandescent light without opening the tube to maintain the gnotobiotic 

environment. At the end of each experiment (day 6 after hatching), live Artemia were fixed with lugol’s 

solution to measure their individual length (IL), using a dissecting microscope equipped with a drawing 

mirror, a digital plan measure and the software Artemia 1.0® (courtesy Marnix Van Damme). As a 
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criterion that combines both the effects of survival and IL, the total biomass production (TBP) was 

determined according to the following equation: 

TBP (millimeters per Falcon tube - mm/FT) = number of survivors × mean IL 

Relative percentage survival (RPS) value was determined in Artemia fed with every product or not 

(control) according to the following equation: 

RPS (%) =  (Percentage of surviving challenged Artemia)/(Percentage of surviving unchallenged 

Artemia) ×100 

Regression analysis was carried out between Artemia survival (arcsine transformed values) and polymer 

concentration (chitin, mannose and β-glucans) in each product in order to test for possible correlation 

between these parameters. 

 

2.7. Statistics 

Values of larval survival (percentage) were arcsin transformed, while values of IL and TBP were 

logarithmic or square root transformed to satisfy normal distribution and homoscedasticity requirements. 

Differences in survival, RPS, IL and TBP of Artemia cultured in different conditions were investigated 

with analysis of variances (ANOVA) and Tukey’s multiple comparison range. All statistical analyses 

were tested at the 0.05 level of probability, using the software SPSS 11.5 for Windows. 

 

3. Results 

Polymer composition of the commercial glucans used in this study is shown in Table 6.2. The 

composition analysis of the products indicates that the percentage of each polymers (chitin, mannose and 

β-glucans) varies between the products. Except for Immunonowall, all components contain a high 

proportion of β-glucan in their sugar fraction. The purity of the compounds (e.g. % of sugar) is however 

very variable. 
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Table 6.2 Differential polymer distribution (chitin, mannose and β-glucan) of six commercial glucans 
tested in the gnotobiotic Artemia challenge test. 

 
                                                                                           Percent (%) of polymer contribution  
                                                                                                                        
Product                   Sugar (%) dry weight          Chitin               Mannose              β-glucan      % glucan on dry weight 
   
Zymosan         71.5     1.7                     14.0                       84.3 60.2 
 
Laminarin                            91.4                                       0                        0.8                         91.2                            83.3 
 
β-glucan (Sigma)                54.8                                        2.9                     5.5                         91.6  50.2 
 
Biorigin         72.7            1.4       2.6     96.0    69.8 
  
MacroGard        50.0            2.0       7.0                         91.0   45.5 
 
Immunowall                       37.0                                        1.6          43.4   55.0   20.3 
 
 
 
 
The effect of β-glucans and chitin particles on the survival of nauplii fed with dead LVS3 was tested in a 

challenge test with VC. The results were presented in Table 6.3 and 6.4 (Exp 1 and 2). No significant 

difference was observed in Artemia survival until day 3 (before challenge test) (data not shown). The 

results indicate that some of the challenged nauplii fed only with dead LVS3 (control treatment) could 

survive until day 6 although in general the performance was low (low survival, low RPS and low TBP). 

The addition of some products (Zymosan, β-glucan (Sigma) and MacroGard) was able to significantly 

improve the TBP in challenged nauplii (in comparison to challenged nauplii which did not receive these 

compounds), mainly due to higher Artemia survival values (Table 6.3 and 6.4, treatments: 2, 8 and 14 vs 

18). On the other hand, the TBP of Artemia was always significantly reduced by challenging the nauplii, 

irrespective of the treatment. Not a single compound had a significant effect on Artemia growth (IL) 

under the described experimental conditions, as illustrated by identical average individual length values 

over all treatments in the absence of challenge. Moreover, application of higher concentrations of these 

products (up to three times) did not change the obtained challenge data (data not shown). 
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Experiment 1                                                                                      Survival (%)  
  
TN                                                                                      Day 4                   Day 5                  Day 6        RPS (%)             IL (mm)           TBP (mm/FT) 
 
 1       dead LVS3+Zymosan                                               83±3abc               79±5abc               75±4abc              82±5a              1.6±0.1a              23.5±1.5ab  
 2       dead LVS3+Zymosan+VC (D3)                               78±3cde               70±4bcd               61±2c                                     1.5±0.1a              19.4±0.8c   
 
 3       dead LVS3+Laminarin                                              84±5abc               81±3ab                79±3ab            22±7cd              1.5±0.1a                24±0.8a   
 4       dead LVS3+Laminarin+VC D3)                               64±5f                  21±8g                 18±5f                                     1.4±0.1a                3.5±1.4g  
 
 5       dead LVS3+Chitin                                                     89±3a                  86±3a                 83±3a              10±5d             1.5±0.1a                20.3±1.5bcd   
 6       dead LVS3+Chitin+VC (D3)                                     63±3f                  20±7g                 9±5f                                       1.4±0.1a                2.5±1.4g 
 
 7       dead LVS3+Glucan                                                   86±3ab                  79±5abc              78±3abc            84±9a              1.6±0.1a               23.1±0.8ab  
 8       dead LVS3+Glucan+VC (D3)                                   79±5bcde                69±5cd               65±7bc                                    1.4±0.1a               18.7±0.8c  
  
 9       dead LVS3+Glucan+Chitin                                       84±3abc                 80±4abc             75±4abc            88±3a                1.6±0.1a              23.6±1.3a   
 10     dead LVS3+Glucan+Chitin+VC (D3)                       80±4bcd                 70±4bcd              66±5c                                      1.5±0.1a              20.3±1.5bc 
  
11      dead LVS3+Biorigin                                                 84±3abc                 78±3abc              70±4bc             23±9cd               1.5±0.1a             21.4±1.2abcd   
12      dead LVS3+Biorigin+VC (D3)                                 70±4ef                   36±8ef                16±6ef                                      1.4±0.1a             4.6±1.8fg  
 
13     dead LVS3+MacroGard                                              83±3abc                 78±3abc               74±3abc            63±3b               1.6±0.1a             23.1±0.8ab   
14     dead LVS3+MacroGard+VC (D3)                              71±3def                  56±3d                 46±3d                                      1.4±0.1a             13.3±0.7e   
 
15     dead LVS3+Immunowall                                           83±3abc                  76±3abc             70±4bc             36±12c                1.5±0.1a            21.2±1.2abcd 
16     dead LVS3+Immunowall+VC (D3)                           65±4f                      41±6e                25±7e                                       1.4±0.1a             7.0±2.0f  
 
17     dead LVS3                                                                  83±3abc                   78±3abc             70±6bc            22±7cd               1.4±0.1a           19.4±1.6d  
18     dead LVS3+VC (D3)                                                 68±3f                      28±6fg               15±4ef                                       1.4±0.1a           4.1±1.1fg 
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Experiment 2                                                                                            Survival (%) 
                                                                                                                        
 TN                                                                                   Day 4                   Day 5                  Day 6            RPS (%)          IL (mm)             TBP (mm/FT) 
                    
1     dead LVS3+Zymosan                                               85±4abc                  79±3ab                74±5abc            86±5a             1.5±0.1ab               22.1±1.2a  
2     dead LVS3+Zymosan+VC (D3)                              79±5abcd                 69±8bc                 64±2cd                                   1.4±0.1ab               17.6±2.5bc   
 
3     dead LVS3+Laminarin                                              83±3abc                 81±3a                    79±3a             16±5cd             1.5±0.1ab              23.2±0.7a   
4     dead LVS3+Laminarin+VC (D3)                              61±3g                   29±3ef                   13±5f                                     1.3±0.1ab              4.3±1.3de  
 
5     dead LVS3+Chitin                                                    79±5abcd                75±4ab                   73±3abc            19±10cd           1.5±0.1ab              22±0.9a   
6     dead LVS3+Chitin+VC (D3)                                    66±5efg                 21±8f                     16±8f                                      1.4±0.1ab              3.8±2.1e 
   
7     dead LVS3+Glucan                                                   83±3abc                  80±4ab                  74±3abc            84±10a           1.5±0.1a               21.9±0.8a  
8     dead LVS3+Glucan+VC (D3)                                   76±3bcde                71±3abc                  65±7cd                                   1.4±0.1ab              16.6±2.3c  
 
9     dead LVS3+Glucan+Chitin                                        80±4abcd                80±4ab                  74±6                         92±6a             1.5±0.1ab              22.7±1.2a   
10   dead LVS3+Glucan+Chitin+VC (D3)                       75±4cde                  69±5bc                  67±3bcd                                  1.3±0.1ab             16.8±1.7bc 
 
11   dead LVS3+Biorigin                                                   85±4ab                   78±3ab                   71±3abc          28±9cd             1.5±0.1a              21.6±0.8a   
12   dead LVS3+Biorigin+VC (D3)                                   73±3def                  40±7de                   20±7ef                                   1.4±0.1ab             5.5±2de  
 
13   dead LVS3+MacroGard                                               83±3abc                  74±3ab                  71±3abc            68±8b             1.5±0.1ab              21.7±0.8a   
14   dead LVS3+MacroGard+VC (D3)                              73±3def                   61±3c                    49±5d                                    1.5±0.1ab              14.2±1.4c   
 
15   dead LVS3+Immunowall                                           81±5abcd                 71±5abc                   69±3abc           41±6c             1.5±0.1ab              20.4±0.7ab 
16   dead LVS3+Immunowall+VC (D3)                            71±5defg                 43±6d                    26±5e                                     1.3±0.1ab              7.6±1.3d  
 
17   dead LVS3                                                                  86±3a                    79±3ab                    74±3ab             24±4cd            1.4±0.1ab               20.9±1.1a  
18   dead LVS3+VC (D3)                                                   63±3fg                   28±3f                    18±3ef                                    1.3±0.1b                4.5±0.7de 
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4. Discussion 

β-Glucans have been successfully used to enhance resistance of crustaceans against bacterial and 

viral infections (Chang et al., 1999; Itami et al., 1994; Kou and Song, 1994; Su et al., 1995; Liao et 

al., 1996; Song  et al., 1997; Chang et al., 2000). The present study confirms the results of Marques 

et al. (2006). That study has shown that a daily addition of small amounts of β-glucan (Sigma) to 

Artemia, fed with a poor performing feed, enhanced resistance of this organism against the 

pathogenic VC, while Artemia solely fed with dead LVS3 cells could not resist this pathogen. Here, 

the addition of β-glucan (Sigma) was able to significantly improve Artemia TBP and RPS 

challenged with VC (mostly due to improvement in survival) compared to the nauplii which did not 

receive that glucan and were challenged with this pathogen (Tables 6.3 and 6.4; line 8 vs 18). The 

administration of different forms of β-glucan in the diet of different shrimp species has been shown 

to result in an enhancement of protection against various pathogens (Itami et al., 1994;  Kou and 

Song, 1994; Su et al., 1995; Liao et al., 1996; Song  et al., 1997; Chang et al., 2000, 1996; Hennig 

et al., 1998; Johansson, 2000). This increased resistance has been attributed to the enhancement of 

phagocytic activity of haemocytes (Itami et al., 1994). Nevertheless, in some cases no beneficial 

effects were observed by using β-glucans. It was reported that survival of juvenile Litopenaeus 

vannamei fed a glucan-supplemented diet was even less than the control animals over seven-week 

periods (Scholz et al., 1999). 

Bath administration of glucan has been proven to be a suitable procedure to enhance the immune 

response and disease resistance in shrimp (Sung et al., 1996; Ravichandran et al., 2005; Chang et 

al., 2003; Misra et al., 2004). However, such enhancement varies with dose and type of glucan, 

feeding regime, test animal (Ai et al., 2007) and developmental stage of the target organism. 

Furthermore, the biological effects of immunostimulants are highly dependent on the specificity of 

the receptors on the target cells recognising them as potential high-risk molecules and triggering 

defence pathways  
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(Bricknell and Dalmo, 2005). Some authors mentioned that a high level of β-1,3-glucan directly 

induced the respiratory burst, which, after a period, can exhaust the immune cells resulting in 

immunosuppression or feedback regulation (Misra  et al., 2004; Ai  et al., 2007; Castro et al., 

1999; Robertsen  et al., 1994).  

Therefore, in the present study only small amounts of putative immune-enhancers were applied to 

Artemia likely not to over-stimulate the immune system. However, when the concentration of the 

applied β-glucans was increased (up to 3 fold) no changes were observed in the results. 

Zymosan is one of the commercial β-glucans used in this study. It was described as a crude yeast 

cell-wall preparation of S. cerevisiae containing a relatively crude mixture of proteins, lipids and 

polysaccharides that was able to stimulate non-specific immunity (Fitzpatrick and DiCarlo, 1964; 

Freimund et al., 2003). We obtained a significant increased resistance against VC (high RPS value) 

when Artemia nauplii were supplemented with small amounts of Zymosan and challenged with this 

pathogen (Table 6.3 and 6.4; lines; 2 vs 18). Actually, the results are very similar to the results 

obtained by using β-glucan (Sigma) in this study. Although Zymosan is not a very pure β-glucan 

(only 84% of the sugars are made up of β-glucan) (see Table 6.2), apparently the level and the type 

of β-glucan it contains is appropriate to up regulate the immune system of Artemia as does β-glucan 

(Sigma). In crayfish, Zymosan can activate the prophenoloxidase (pro PO) system, which is 

considered an important component in the innate defence of arthropods (Cardenas et al., 1997). 

Sung et al. (1996) showed that Zymosan treatment in shrimp via immersion significantly increased 

anti-E. coli activity of plasma, as well as superoxide anion (O2
- ) and PO activity of shrimp 

haemocytes. These enhanced microbicidal reactions increased the clearance ability of haemolymph 

against the invasive pathogen Vibrio vulnificus (Sung et al., 1996).   

MacroGard, a cell wall extract from Saccharomyces cerevisiae, is another type of β-glucan tested in 

the gnotobiotic challenge test system. Administration of MacroGard by immersion has been shown 

to cause a transient increase in phenoloxidase enzyme activity and superoxide production (O2
−) in 
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P. monodon (Sung et al., 1996). Similarly, immersion of shrimp post-larvae in a suspension of 

MacroGard enhanced growth performance, immune response, and disease resistance in black tiger 

shrimp (Supamattaya et al., 2000). In the present study, MacroGard improved Artemia survival, 

RPS and TBP, providing some level of pathogen resistance when challenged with VC (Table 6.3 

and 6.4, line 14 vs 18), although the results, for unknown reasons, were not as spectacular as with 

β-glucan (Sigma) or Zymosan.  

Laminarin (a water-soluble β-1,3-glucan derived from the brown algae Laminaria digitata), was the 

other type of commercial β-glucan tested in the present study. Although some investigations 

documented positive immunostimulatory effects of Laminarin, no beneficial effect was observed in 

this study (low RPS and low TBP in challenged nauplii) (Table 3 and 4; lines; 4 vs 18). The effects 

of Laminarin on the haemocytes of the freshwater crayfish, Astacus astacus, and the shore crab, 

Carcinus maenas, were studied in vitro and in vivo to determine the role of the PO activation 

system, in the cellular defense reactions of crustaceans (Smith and Söderhäll, 1983). In vitro, 

phagocytosis of the bacterium, Moraxella sp. was significantly raised by addition of Laminarin. In 

vivo, injection of Laminaran (0.2 mg /ml haemolymph) into the hemocoel of A. astacus or C. 

maenas caused a rapid, marked reduction in the number of circulating haemocytes, indicating that a 

cellular defense reaction was initiated (Smith and Söderhäll, 1983). So although Laminarin seems to 

have a proven in vitro and in vivo effect (the latter after injection into the host), there was no effect 

in this study. This might be due to the solubility of this compound, resulting in non-ingestion by 

Artemia, preventing exposure of this compound to cells responsible for immunostimulation. 

Sritunyalucksana et al. (1999) assesed the effect of Laminarin in vitro by measuring PO, agglutinin 

and antibacterial activities in black tiger shrimp.  Interestingly, their results showed a reduction in 

PO and antibacterial activities following Laminarin treatment. Furthermore, Muñoz et al. (2006) 

reported no significant effect of using Laminarin on haemolyph PO activity in three clam species. In 

freshwater crayfish Astacus astacus, injections with laminarin resulted in increased levels of 

prophenoloxidase mRNA in the haemocytes, whereas the levels of several other transcripts such as 
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actin or the blood cell adhesion protein peroxinectin remained unchanged (Cerenius et al., 2003). In 

standard infection experiments conducted with the fungal parasite, Aphanomyces astaci, the 

accumulated mortality reached 50% within 4 days in the infected control crayfish, whereas the same 

mortality was reached 9 days in the immune-stimulated animals. In summary, literature data and the 

results reported here suggest that the immunostimulatory effect of Laminarin is dependent on the 

experimental set-up and further experiments are needed to clarify under which conditions 

Laminarin can be beneficial to the host. 

In the present study the application of two commercial β-glucans namely Biorigin and Immunowall 

had no favorable effect on Artemia nauplii challenged with pathogenic VC (Table 6.3 and 6.4; lines; 

12 and 16 vs 18). Although the level of β-glucan in Biorigin is even higher than in MacroGard (see 

Table 6.2), for unknown reasons it could not contribute to pathogen resistance. 

Immunomodulatory effects of chitin (Chitin is a β-1,4-linked polymer of N-acetyl-D-glucosamine 

and a common constituent of insect, exoskeleton, crustacean shells and fungal cell walls (Esteban et 

al., 2000) and chitosan have been reported by many workers (Sakai et al., 1992; Anderson et al., 

1995). The present study showed no significant effect of chitin in the Artemia challenge test (Table 

6.3 and 6.4; lines; 6 vs 18). Furthermore, addition of chitin to the β-glucan (Sigma), could not 

improve the level of pathogen resistance obtained by β-glucan (Sigma) itself. White shrimp, 

Litopenaeus vannamei that have been injected with chitin at 6 µg/g, showed increased phagocytic 

activity and resistance against Vibrio alginolyticus infection (Wang and Chen, 2005). It is known 

that many external (environmental) and internal factors may influence the effects of a particular 

immunostimulant (Anderson, 1996). One such factor is the way in which the immunostimulant is 

administered. In Penaeus monodon shrimp, only intramuscular injection of a WSSV (white spot 

syndrome virus) envelope protein (VP19)- in contrary to oral administration- could improve 

survival after WSSV challenge (Witteveldt, 2005). Therefore, it is suggested that ingestion of chitin 

is not a proper way to induce the immune system in gnotobiotic Artemia.  
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In the present study, VC never had a significant negative impact on individual growth. However in 

combination with the survival values, total biomass production was always significantly lower 

compared to the respective controls, indicating that VC still had a adverse effect on Artemia, even 

in the presence of a protective agent like glucan (Sigma) and zymosan (Table 6.3 and 6.4, 

treatments: 1 vs 2, and 7 vs 8). We can only speculate on the mechanism involved. VC could 

possibly influence food conversion rate (FCR) for instance through a reduced resorption of nutrients 

or through an increased transit in the gastro-intestinal tract. Alternatively VC could affect the food 

uptake rate (FUR) resulting in poorer performance. A more targeted study would be needed to 

verify in which way total biomass production is affected even in the absence of a significant 

reduced survival. 

The values in Table 6.2 indicate that the sugar concentration is different in the various compounds 

applied in this study. Also, the level of β-glucan within the sugar fraction varies between these 

products. Therefore, the total amount of β-glucans (dry weight) offered to Artemia was calculated 

(see Table 6.1). In fact, different amounts of β-glucans from these compounds were supplied to 

Artemia. Therefore, one could expect that the differences observed in this study could actually be 

due to different amounts of β-glucans (from different products) being supplied to Artemia. For 

instance, if Immunowall could not protect Artemia in challenge test, it could be argued that this is 

due to the low β-glucan concentration in this product (offered to Artemia) in comparison to 

Zymosan or β-glucans (Sigma). However, when higher amounts of the products (up to 3 fold) were 

provided to Artemia, the results did not change. In addition, compared with Zymosan or β-glucan 

(Sigma), the higher amount of β-glucan existing in Biorigin could not provide protection in 

challenged nauplii. Also, no correlation could be found between chemical composition of the tested 

compounds and their protective effect in the challenged group. Therefore, it can be postulated that 

the immunostimulation is not only dependent on the amount of β-glucan offered, but rather the 

quality (molecular weight, three dimensional structure, type and frequency of branches (Chang et 

al., 2003) of the products must be important. Interestingly, it was shown that the adsorption affinity 
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of β-glucans to mycotoxins (e.g. Zearalenone (ZEN) produced by numerous Fusarium species) is 

highly dependent on three-dimentional structure of these products (Yiannikouris et al., 2004).  

 

 

5. Conclusion 

This is the first time that these different commercial glucans and chitin particles have been tested 

simultaneously in a standardized Artemia challenge test. Because of the gnotobiotic conditions, this 

system can be used as a unique tool for testing anti-infectious properties of a specific compound 

with limited nutritional interference. Therefore, this challenge test, complemented with other tools 

such as measurement of immune parameters and gene expression analysis can provide further 

documentation on the exact impact of putative immunostimulants on immunity and disease 

resistance in Artemia, probably offering further insight into the innate immune response in 

crustacean.  
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General discussion and future research 

 

In recent years, microbial disease has emerged as one of the most important factors hampering the 

development of aquaculture, being responsible for immense mortalities occurring especially in the 

early life stages of aquatic organisms. Since a disease outbreak can be difficult to control, farm 

management focuses on disease prevention. Prevention techniques mainly include control of the 

microbiota, maintenance of a healthy microbial environments in larviculture, careful selection of 

broodstock, vaccinations, reduction of  stress by adjusting stocking densities, veterinary 

certification, antibiotic treatments, and fallowing of farms. 

The current debate on methods to control disease in aquaculture concentrates on the potential 

negative effects of some of these treatments, such as the proliferation of antibiotic-resistant bacteria 

or unintended effects (e.g. environmental and human health consequences (Witte, 2000)). To avoid 

these problems, more environmental-friendly prophylactic and preventive solutions are required 

(e.g. nutritional improvements, probiotics and immunostimulants). However, the quality, 

effectiveness and reproducibility of such new techniques must be evaluated under standardized and 

controlled conditions (Smith et al., 2003). Marques et al. (2004) have recently developed and 

validated the usefulness of an Artemia gnotobiotic test system, allowing studying the effect of food 

composition on Artermia performance (survival and growth) either in the presence or absence of a 

pathogen (such as Vibrio).  

  

I. Gnotobiotic Artemia test system 

Several particular characteristics of Artemia make this animal very suitable to be used as a test 

organism, such as small size, short generation time, cyst production and continuous non-selective 

particle filter-feeder. Marques et al. (2004) optimized a gnotobiotic culture of Artemia, using a 

simple and highly reproducible procedure to obtain axenic animals. In a laminar flow hood, cysts 

were decapsulated using strong oxidizing agents. After the decapsulation procedure, germ-free cysts 

were obtained and nauplii were allowed to hatch in sterile conditions and to develop until the 2nd 
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instar stage. At that stage they start ingesting feed. These nauplii were used for setting up the 

experiments. In order to check for contaminations, a combination of plating on marine agar (MA) 

and live counting (using tetrazolium salt MTT live stain) was used, following the procedures 

described in Chapters III. An important consideration, when using gnotobiotic Artemia test 

(GART), is that all media used to culture either Artemia or live feeds need to be filtered (0.22μm) 

before autoclavation in order to remove any microbial biomass (dead or alive), as dead bacteria 

even when present in small amounts, can considerably alter the nauplii performance and interfere in 

reproducibility of the experiments (Marques et al., 2005). 

Provided they can be cultured axenically, several feed can be used to culture gnotobiotic Artemia 

such as microalgae, live or dead bacterium and baker’s yeast Saccharomyces cerevisiae (Marques et 

al., 2005). 

In the last decades yeast has been subject to intensive genetic research (e.g. its entire genome has 

been sequenced and genetic manipulation is possible allowing for the construction of gene deletion 

mutants, as well as strains overexpressing certain genes). Yeast strains harbouring null mutations in 

genes involved in cell wall synthesis are nowadays commercially available. 

 

Scope of the research 

 

The aim of the present study was to verify the protective nature of baker’s yeast strains and extracts 

in a gnotobiotic Artemia test system and to identify the cell-wall components that are conducive to 

the protective effect against the pathogen in Artemia (findings obtained in chapter III, IV, V and 

VI). Therefore, the effect of isogenic yeast deletion mutants (7 strains) (together with wild type 

yeast (WT)) and some commercial yeast extracts was evaluated in GART.      

 

 

II. Host-microbe interaction 
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Using GART, the outcome of the host-microbial (Artemia versus Vibrio) interaction was tested 

under different feeding regimes, such as: (i) different axenic yeast strains; (ii) live and dead 

bacteria; and (iii) different putative immunostimulants.  

 

2.1. Yeast mutants 

In previous studies, Coutteau et al. (1990) considered live baker’s yeast to have a low feeding value 

for Artemia, likely due to the absence of digestive enzymes in their gut necessary to digest the 

mannoprotein outer layer of the yeast cell wall. However, the nutritional value of yeast was 

significantly improved when feeding yeast cells i) harbouring null mutants for enzymes involved 

early in the biochemical pathway for cell wall mannoproteins synthesis (e.g. MNN9 mutation), ii) 

with a reduced possibility to phosphorylate mannoproteins (e.g. MNN6 mutation), iii) with reduced 

chitin (e.g. CHS3 mutation) or reduced glucan contents (e.g. FKS1, KNR4, KRE6 and GAS1 

mutation). In addition, the yeast growth phase and yeast growth medium were found to be important 

parameters to determine the quality of yeast cells as feed for Artemia. A strong positive correlation 

was found between Artemia performance and the yeast cell wall chitin and glucan contents, while 

the mannoprotein content was negatively correlated  with Artemia performance (see Chapter III). 

Live mnn9 yeast cells grown on yeast nitrogen base (YNB) medium and harvested in the 

exponential growth phase proved to be an excellent yeast feed for Artemia (Marques et al., 2004). 

In conclusion, these results suggest that any mutation affecting the yeast cell-wall make-up is 

sufficient to improve the digestibility for Artemia. The yeast cell wall composition, especially 

higher amounts of cell wall bound chitin and glucans in combination with lower amounts of 

mannoproteins, play an important role in the enhancement of the yeast digestibility by Artemia, thus 

supporting the hypothesis formulated by Coutteau et al. (1990), that external mannoproteins layer 

might be hard to digest for Artemia. 

In a second set of experiments, the protective nature of yeast mutants was investigated using GART 

by exposing Artemia to a virulent pathogen (V. campbellii). In previous studies, using only yeast 

cells as food, the protective effect against this pathogen was found to be especially high when 
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Artemia was fed a good quality food (e.g. mnn9 yeast), suggesting that the observed protection was 

either due to a nutritional effect or an immunostimulatory effect (or a combination).  In the present 

study, in order to try to differentiate between the nutritional effects and the immunostimulatory 

nature, only a low amount of yeast cells (from 8 strains) was fed to Artemia (yeast constituted only 

10% of the AFDW offered).  Even under these circumstances mnn9 yeast cells still supported an 

increased individual growth as well as an induced total protection against Vibrio. Therefore, it was 

suggested that, mnn9 yeast has both strong nutritional and protective characteristics (the latter 

possibly through immunostimulation) (see chapter III). Interestingly, in contrast to mnn9 yeast, the 

temporary protection obtained by feeding the chs3 strain (at 10% of the total AFDW offered) is not 

coupled with a better individual growth performance suggesting absence of nutritional interference 

in dealing with the pathogen. Chitin plays a key role in yeast cell growth and division and is 

attached covalently to β-1,3-glucans, β-1,6-glucans and mannoproteins (Cabib et al., 2001). 

Therefore, the better results obtained with nauplii fed chitin defective yeast could be due to an 

enhanced digestibility of chs3-cells by Artemia, caused by reduced linkage between the three cell 

wall components, eventually increasing the availability of glucan. It is however also possible that 

the glucan structure is different in the chs3 strain. Anyhow, these results seem to suggest that chitin 

as such is not involved in the protection against VC (see also Chapter VI). 

Since the challenge results obtained with the chs3 strain seem to suggest a pure immunostimulatory 

effect (no interfering nutritional effect), future research on gene expression in Artemia under these 

circumstances could help in identifying differentially expressed genes, elucidating the 

immunostimulatory activity of the chs3 strain.  

The hypothesis formulated by Coutteau et al. (1990) concerning low digestibility of yeast cells by 

Artemia was evaluated in chapter IV, where various yeast strains (8 strains) were treated with 2-

mercapto-ethanol (2ME) and then used to asses their nutritional and anti-infectious characteristics 

for gnotobiotically-grown Artemia. In most cases, chemically treated yeast cells were better feed for 

Artemia than the untreated cells. In addition, 2ME treatment of some yeast strains (e.g. gas1, kre6 

and chs3) significantly improved Artemia protection against VC. It is claimed that 2ME cleave the 
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disulfide linkages in the cell wall mannoproteins, making them more permeable and susceptible to 

enzymatic degradation in the digestive system of Artemia (Coutteau et al., 1990). Possibly, in those 

treated yeast strains, with improved Artemia performance in comparison to untreated cells, the gene 

mutations affecting the yeast cell wall composition and scaffolding (by reducing the amount of 

covalent links between the major components of yeast cell wall namely mannoproteins, β-glucans 

and chitin), predisposed the yeast cell wall to further changes caused by 2ME treatment, resulting in 

a higher bioavalibility of β-glucan.  Taken together, the present study and the results of Coutteau et 

al. (1990) suggest that, apart from the cell wall composition, the type and/or density of covalent 

links between the three major yeast cell wall components, as well as any weakening of yeast cell 

wall scaffolding may be responsible for a positive effect on Artemia performance in the presence or 

absence of challenge. Future studies could be performed to generate viable double yeast deletion 

mutants. In this way it could be possible to further manipulate the composition of the yeast cell 

wall, identifying which cell wall components are responsible for the immunostimulatory effect in 

Artemia.. Another possibility could be to extract the β-glucan from the yeast strains (single or 

double mutants) and to test them in GART system.  Interesting findings were also described in 

chapter V, where either protective yeast cells (mnn9 yeast) or a putative immunostimulant (e.g. 

glucan particles) were supplied to Artemia at different time points with respect to the VC challenge. 

That study revealed that these compounds could only provide protection against the pathogen when 

they were supplied to Artemia well in advance of a challenge (8 to 48h depending the source). In 

addition, the putative immunostimulants did not have a clear curative effect.  The fact that mnn9 

yeast could trigger the protective effect faster than pure glucan could be due to two phenomena. 

Either, mnn9 cells provided extra nutritional compounds not present in pure glucan which is 

supported by the feeding trials or the induction of better individual growth obtained by feeding this 

yeast strain, or it is also possible that the induction of the protective effect by the complete yeast 

cells may be better because the immune system has evolved over time and learned to recognize 

glucan embedded in a (yeast) cell wall matrix better then chemically pure glucan. In addition the 

chemical nature of the glucans (e.g. the ratio of β-1,3 and β-1,6-glucan, the molecular weight, the 
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dimensional structure, type and frequency of branches) can also have a major effect (Ai et al., 

2007). Hence this calls for a more detailed characterization of the i) yeast cell wall extracts (such as 

commercial β-glucans) as well ii) the cell wall structure of the used yeast strains.  Some advocates 

of glucan or other immunostimulants argue that treatment with these substances cause a fast 

immune reaction (i.e. release of immune molecules such as opsonin, binding molecules and other 

defense proteins into the circulation) against opportunistic or pathogenic invasion. However, there 

is little unequivocal evidence that the so-called ‘immunostimulants’ act in this way. In crayfish, 

fungal infection can be mimicked with injection of a β1,3-glucan (e.g. laminarin) which induces a 

rapid drop in haemocyte number followed by a recovery after 24–48 hours (Söderhäll et al., 2003). 

The loss of circulating haemocytes after β-1,3-glucan injection is probably due to cell aggregation 

inside the animal, indicating an important role of the haemocytes in defense. It was shown in 

Fusarium-infected shrimp, that the rate of haemocytes proliferation significantly increased. 

Therefore, fungal infection or β-1,3-glucan administration  not only affects hemocytic behaviour, as 

earlier described for freshwater crayfish (Persson, 1987; Thomqvist, 1993), but also haemocyte 

proliferation and perhaps haemocyte synthesis or metabolism are affected. The time elapse between 

treatment and response appears to vary with the species and the product used. With P. japonicus a 

three-fold increase in the number of circulating haemocytes were observed 5 days after injection of 

LPS and a six-fold increase after injection of the fungus, Fusarium. Therefore, under the described 

experimental circumstances glucan and/or mnn9 yeast (after uptake and probably ingestion) are 

likely triggering the proliferation or the maturation of the haemocytes, explaining the time lag 

between the addition of the putative immunostimulants and the appearance of the protective effect. 

This hypothesis needs careful experimental verification. If proliferation of heamocytes could be 

demonstrated, the used yeast cells or glucans would become candidate immunostimulants for 

Artemia (and probably for other crustaceans).  It should be noticed that the protective effect 

obtained by these products in newborn Artemia nauplii may not necessarily be as strong in more 

advanced developmental stages such as juvenile or adult Artemia, especially in open culture, where 

Artemia will have been exposed to a variety of microbial cell wall material.  Unfortunately, little is 
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known about the ontogeny of the immune system in invertebrates and that of Artemia in special. 

Nevertheless, a limited number of reference have shown that immune capabilities vary depending 

on different developmental stages of an organism.  

In the present study short-time exposure of Artemia to mnn9 strain (priming) did not provide a long-

time protection against the pathogen. Previous priming studies with the mealworm beetle, Tenebrio 

molitor, revealed a long-term protection (50 days) against the pathogenic fungus Metarhizium 

anisopliae after priming the innate immune system with lipopolysaccharides (LPS) (Moret and 

Siva-Jothy, 2003). Although beetles are phylogenetically distant  from  Artemia and the 

experimental conditions in the present study are different, this is the only literature available which 

could be linked to the current study. On the whole, the priming of the innate immune system of 

invertebrates could depend on several factors such as the specificity and quantity of a compound 

used as well as the animal tested.  

 

2.2. Enhancement of disease resistance 

Immunostimulants are claimed to demonstrate positive impact on immunity and disease resistance 

in aquaculture. However, there are still many doubts on the efficacy of these compounds, especially 

in invertebrates (Smith et al., 2003). According to the latter authors, there is an urgent need for 

proper evaluation of the efficacy of putative immunostimulants in more standardised trials, under a 

range of rearing conditions and with a diversity of pathogens. The use of gnotobiotic Artemia can 

be an excellent tool to evaluate the efficacy of immunostimulants in standardized conditions. 

Therefore, in Chapter VI, the protective potential of a series of commercial β-glucans and chitin 

particles was verified in gnotobiotic Artemia fed with poor-quality feeds (dead bacterial biomass). 

This feed was not able to provide protection against the pathogen. No growth enhancement 

(nutritional effect) was observed among the products. The results showed that, only β-glucan 

(Sigma) and Zymosan could completely protect the Artemia against the pathogen while MacroGard 

provided some level of protection. Artemia not supplemented with those glucan particles displayed 

high mortality. No protective effect was observed with chitin particles. Although the exact reason 



Chapter 7 

 184 

remains not clear, it could be that ingestion of chitin is not a proper way to induce the immune 

system in gnotobiotic Artemia, as injection of chitin in white shrimp, Litopenaeus vannamei 

increased resistance against Vibrio alginolyticus infection. It has been reported that, different 

administration protocols (e.g. immersion, injection, oral) have produced different results, even with 

the same substance (Witteveldt, 2005; Azad et al., 2005). In the present study, a poor correlation 

was found between survival values of the challenged Artemia and the product compositions (such as 

chitin, mannose and β-glucan content) indicating that the quality of β-glucans (e.g. the ratio of β-1,3 

and β-1,6-glucan, the molecular weight, the dimensional structure, type and frequency of branches), 

eventually in combination with other unidentified compounds is more important than the amount of 

product offered. 

In conclusion, the immunomodulatory effects of glucans are not unequivocal and have been shown 

to be different depending on the product source, animal species, development stage of the target 

organism, dose and type of glucan, route and time schedule of administration (Guselle et al., 2007) 

and the association with other immunostimulants. Moreover, the impact of immunostimulants on 

the developing immune system of Artemia is not clear. In fish larvi, some researchers maintain that 

the effect is minimal and immunostimulants can be fed to larval fish as soon as the animal can be 

weaned to an artificial diet (Bricknell and Dalmo, 2005). However, it is also believed that 

administering potentially powerful immunomodulating compounds to an animal that is still to 

experience major developmental changes in the immune system results in the induction of tolerance 

against immunostmulants (Bricknell and Dalmo, 2005). Therefore, further studies should be 

performed in standardized conditions (e.g. using gnotobiotic Artemia) to evaluate the potential 

impacts of immunostimulants on the developing immune system of target organisms. 

Further research on the relationship between gene expression and survival of challenged nauplii in 

gnotobiotically-grown Artemia could elucidate in detail the mechanism or action of yeast cells 

and/or specific compounds on the innate immune system. Having characterized molecular markers 

for immunostimulation in Artemia, making use to the various treatments that seem to protect 



Chapter 7 

 185 

Artemia against V. campbellii, it will be necessary to confirm the usefulness of these markers in 

other species. Proof for this would make the GART system a good model system. 

 

III. Conclusion 

The gnotobiotic Artemia culture system is a useful tool to evaluate new treatments for disease 

prevention in aquaculture especially in the early larval stages. In combination with immunological 

markers it could allow for a very detailed study on the mechanisms involved in host-microbial 

interactions, contributing to the development of effective solutions for disease control in 

aquaculture. 

The gnotobiotic Artemia test system (GART), combined with yeast strains presenting different cell 

wall composition, presents a unique opportunity (because of no interference of other microbial 

compounds) to investigate how the yeast cell wall composition influences both macro parameters 

(e.g. growth and survival), as well as gene expression in the host. The identification of genes of 

importance to the immune function in Artemia, followed by the verification of the importance in 

disease prevention of their heterologous counterparts in other crustaceans, could make the GART 

system a valid model for developmental immunological studies in invertebrates of economical 

importance in aquaculture. 
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SUMMARY 

 

World aquaculture has grown significantly during the past half-century due to a global increase in 

demand of fish and shellfish products and to a stagnation in the world fisheries capture. In spite of 

the technological improvements, intensive culture of aquatic organisms often leads to unpredictable 

high mortalities, especially in the early life stages, mostly caused by pathogenic or opportunistic 

bacteria. Until recently, several chemotherapies, such as antibiotics, were considered for controlling 

these microorganisms in aquaculture. However, this practice is now questioned due to the 

appearance of several environmental and human disorders (see Chapter I). Nowadays, several new 

alternative, environmental-friendly prophylactic and preventive strategies are being developed to 

control diseases and maintain a healthy microbial environment in larvae culture, such as 

improvements in larval nutrition and the use of probiotics, vaccines and immunostimulants (see 

Chapter I and II). Nevertheless, the quality, effectiveness and reproducibility of such new 

techniques must be evaluated under standardized and controlled conditions taking into account 

ecological, environmental, zootechnical and nutritional aspects. Gnotobiotic aquatic systems, i.e., 

animals are reared in a germ-free (axenic) state or harbouring a known pre-specified flora of 

microorganisms, can be excellent tools to investigate several issues (see Chapter II). 

Gnotobiotically-raised brine shrimp Artemia has been developed as an aquatic test system to 

evaluate new treatments of disease control and to study the mechanisms involved in such control. 

This test system allows studying the effect of food composition as well as host-microbe 

interactions. Baker’s yeast Saccharomyces cerevisiae, which has been found to be a good immune 

enhancer in some aquatic organisms, is an excellent source of β-glucans and chitin. These 

compounds, which are well-known as immunostimulants in aquatic organisms, are mainly present 

in the yeast cell wall as major compounds together with mannoproteins. The general objective of 

the present thesis was to study the anti-infectious characteristics of isogenic yeast mutants in a 
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gnotobiotically-grown Artemia test system in order to identify the critical cell-wall components 

involved in the protection against Vibrio campbellii. Various yeast cell wall mutants provide a 

range of cell wall compositions (β-glucans, mannoproteins and chitin). In a first set of experiments 

(Chapter III), a collection of yeast mutant strains was used to evaluate their nutritional and anti-

infectious nature for gnotobiotically-grown Artemia. Yeast cell-wall mutants were always better 

feed for Artemia than the isogenic wild type mainly because they supported a higher survival but 

not necessarily a stronger individual growth. These results suggest that any mutation affecting the 

yeast cell-wall make-up is sufficient to improve their digestibility for Artemia. The second set of 

experiments investigated the use of a small amount of yeast cells (10% of total AFDW usually 

provided to nauplii) in gnotobiotic Artemia to overcome pathogenicity of Vibrio campbellii (VC). 

Among all yeast cell strains used in this study, only mnn9 yeast (harbouring less cell wall-bond 

mannoproteins and more glucan and chitin) seems to completely protect Artemia against the 

pathogen. Incomplete protection against the pathogen was obtained by the gas1 and chs3 mutants, 

which are lacking the gene for respectively a particular cell wall protein and chitin synthesis. 

However, only with the chs3 strain, in contrast to the gas1 or mnn9 strains, the temporary protection 

against VC is not concomitant with a better growth performance suggesting non-interference of 

general nutritional effects.  

In Chapter IV, the phenomenon of low yeast digestibility reported by Coutteau was studied. 

According to these authors, mannoproteins present in the yeast cell wall might be the main barrier 

for the yeast digestibility by Artemia. Therefore, in Chapter IV, the yeast cells (the same strains 

used in Chapter III) were chemically treated with 2-mercapto-ethanol (2ME) (which is able to 

reduce and cleave the disulfide links between the cell wall mannoproteins) and then used to 

evaluate their nutritional and anti-infectious nature for gnotobiotically-grown Artemia. In most 

cases, chemically treated yeast cells were better feed for Artemia than the untreated cells. The better 

performance of Artemia fed 2ME-treated cells was due either an increased survival (with WT, knr4 

and chs3) or a bigger individual length (fks1 and kre6) or due both to an improved survival and a 

bigger individual length (mnn6). The 2ME yeast treatment significantly improved Artemia 
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protection against VC when applied to gas1, kre6 and chs3 strains. It is postulated that simple 

chemical treatment in these strains could possibly increase the bio-availability of β-glucans to 

Artemia stimulating the immune system against the pathogenic VC.  So, it can be stated that certain 

yeast mutants (treated or untreated with 2ME) could be considered as promising immunostimulants 

in aquaculture. 

 

It has been previously shown that small quantities of the mnn9 yeast cells and/or glucan particles 

could protect Artemia nauplii against the pathogenic bacterium Vibrio campbellii in the gnotobiotic 

Artemia challenge test. Apparently, the higher amount and/or availability of β-glucans and/or chitin 

present in mnn9 yeast strain might play an essential role in such protection. The present study (see 

Chapter V) reveals that these compounds could only provide protection against the pathogen when 

they were supplied to Artemia well in advance to the challenge (8 to 48h depending on the source, 

mnn9 and glucan respectively). Also the putative immunostimulanthardly have a curative action. 

Although some reports argue that β-glucan or other immunostimulants cause a fast immune reaction 

(i.e. release of immune molecules such as opsonin, binding molecules and other defense proteins 

into the circulation) (which was not observed in this study) against pathogens, there is little 

unequivocal evidence to support this hypothesis. However, it has been reported that β-glucan 

administration not only affects hemocytic behaviour but also haemocyte proliferation and perhaps 

haemocyte synthesis or metabolism are affected. The time needed for the response to appear varies 

with species, developmental stage of the animal and the product used. Therefore, it can be 

postulated that the β-glucans in mnn9 cells are probably more appropriate than pure β-glucan (e.g. 

the ratio of β-1,3 and β-1,6-glucan, the molecular weight, the dimensional structure, type and 

frequency of branches) which enables the mnn9 cells to trigger the immune system (probably 

through haemocyte proliferation) in Artemia in a shorter period of time compared with pure β-

glucan.  

In the present study (Chapter V) short-time exposure of Artemia to mnn9 strain (priming) did not 

provide protection against the pathogen longer than 2 days. Although the exact reason is not clear 



Summary/Samenvatting 

 190 

yet, it has been reported that the priming of the innate immune system of invertebrates could depend 

on several factors such as the specificity and quantity of a compound used as well as the animal 

tested.  

Immunostimulants are claimed to demonstrate positive impact on immunity and disease resistance 

in aquaculture. However, there are still many doubts on the efficacy of these compounds, especially 

in invertebrates. Therefore, in a last set of experiments (Chapter VI) the anti-infectious potential of 

some putative immunostimulants was verified in a gnotobiotic Artemia challenge test system. 

Therefore, six commercial β-glucans (all obtained from baker’s yeast Saccharomyces cerevisiae 

except for Laminarin) and chitin particles were verified in gnotobiotic Artemia fed with poor-

quality and non-protective feeds and challenged with pathogenic VC. The results showed that, only 

β-glucan (Sigma) and Zymosan could totally protect the Artemia against the pathogen while 

MacroGard provided some level of protection. Artemia not supplemented with those glucan 

particles displayed high mortality.  

In conclusion, the gnotobiotic Artemia culture system (GART) is an excellent tool to evaluate new 

treatments and to study the mechanisms involved in host-microbial interactions (if combined with 

immune markers, that still need to be developed for Artemia). It is hoped that GART can in this way 

contribute to the development of effective solutions for disease control in aquaculture. 
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SAMENVATTING 

 

De aquacultuur productie is wereldwijd de voorbij decennia beduidend toegenomen door de globale 

toename van de vraag naar vis en schaaldieren en door de stagnatie van het aanbod uit de visserij. 

Ondanks de technologische vooruitgang, lijdt de intensieve kweek van aquatische organismen 

dikwijls aan onvoorspelbare en hoge sterfte, voornamelijk gedurende de eerste levensstadia, en dit 

hoofdzakelijk door pathogene of opportunistische bacteriën. Tot voor kort werden chemische 

therapieën, zoals antibiotica, aangewend om de micro-organismen onder controle te houden. Deze 

praktijken zijn nu grotendeels verbannen wegens de implicaties voor het milieu en de menselijke 

gezondheid (Hoofdstuk I). Momenteel worden er verscheidene alternatieve en milieuvriendelijke 

profylactische en preventieve strategieën ontwikkeld voor ziektebeheer en controle van de 

microbiologische omgeving in de larventeelt, met name de verbetering van het larvale voedsel, het 

gebruik van probiotica, vaccinatie en immunostimulantia (Hoofdstuk I en II). De kwaliteit, 

reproduceerbaarheid en efficiëntie van deze nieuwe technieken moet wel geëvalueerd worden onder 

gecontroleerde standaard omstandigheden rekening houdend met ecologische, zoötechnische en 

nutritionele aspecten. Gnotobiotische aquatische systemen, waarbij dieren gekweekt worden in een 

omgeving waarbij geen of enkele specifieke en gekende micro-organismen aanwezig zijn, zijn een 

uitstekend hulpmiddel om dit te bestuderen (Hoofdstuk II). Een gnotobiotisch kweektest voor 

Artemia werd ontwikkeld om nieuwe behandelingen tegen ziektekiemen te bestuderen alsook de 

mechanismen die bij die behandeling betrokken zijn. Dit testsysteem laat toe om de effecten te 

bestuderen van bepaalde nutritionele bestanddelen en gastheer-bacterie interactie.  

Bakkersgist, Saccharomyces cerevisiae, blijkt een goede immunostimulant te zijn voor bepaalde 

aquatische organismen en is een uitstekende bron van β-glucanen en chitine. Deze componenten 

komen vooral voor in the gist celwand samen met mannoproteïnen. De algemene doelstelling van 

deze studie is het onderzoek naar de beschermende werking van isogene gistmutanten voor Artemia 

tegen pathogene bacteriën en de identificatie van celwand componenten verantwoordelijk voor de 
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beschermende werking. Dankzij de uiteenlopende celwand samenstelling van de gebruikte gist 

mutanten (verhouding van β-glucanen, mannoproteïnen en chitine), kon in de eerste reeks 

experimenten (Hoofdstuk I) de nutritionele en beschermende eigenschappen ten opzichte van 

Artemia worden onderzocht. De gist mutanten bleken steeds een beter voedsel te zijn voor Artemia 

dan de isogene niet-gemuteerde gist, voornamelijk door de hogere overleving en in mindere mate 

door een betere groei. Dit resultaat suggereert dat ongeacht welke mutatie de celwand structuur van 

gist beïnvloedt, dit volstaat om de verteerbaarheid door Artemia te bevorderen.  

Een tweede reeks experimenten onderzocht het gebruik van minimale toevoegingen van gistcellen 

(10% van het totale asvrije drooggewicht dat werd toegediend als voedsel) voor het verkrijgen van 

bescherming tegen pathogene Vibrio campbellii (VC). Van alle onderzochte gistmutanten in deze 

studie alleen Artemia gevoed met mnn9 (stam met minste celwand gebonden mannoproteïnen en 

meer glucanen en chitine) een volledige bescherming tegen de pathogeen bieden. Gedeeltelijke 

bescherming tegen de pathogeen werd bereikt met de gas1 en chs3 mutant, de welke het gen 

ontbreken om resp. een specifieke celwand proteïne en chitine te synthetiseren. In tegenstelling met 

de gas1 en mnn9 gist stam ging de bescherming tegen de pathogene VC door de chs3 stam niet 

gepaard met een betere groei hetgeen suggereert dat er geen nutritioneel effect in het spel was.  

In Hoofdstuk IV werd de beperkte verteerbaarheid van gist door Artemia nader bestudeerd.  

Volgens Coutteau et al. (1990), vormen mannoproteïnen in de celwand van gist the belangrijkste 

belemmering voor de vertering door Artemia. In Hoofdstuk IV werden de gistmutanten chemisch 

behandeld met 2-mercapto-ethanol (ME) en dan gevoederd aan Artemia om de nutritionele en 

immonostimulerende effect te evalueren. In de meeste gevallen was de behandelde gist een beter 

voedsel voor Artemia. De betere prestatie van Artemia met de behandelde gisten was te danken, 

hetzij door een betere overleving (met WT, knr4 en chs3), hetzij door een betere groei (fks1 en 

kre6), hetzij door zowel betere groei als overleving (mnn6). De ME behandeling verbeterde 

significant de bescherming tegen de pathogeen bij gas1, kre6 en chs3 stammen. Vermoedelijk 

verbeterde de chemische behandeling de beschikbaarheid van β-glucanen voor Artemia en 

stimuleerde zodoende het immuunsysteem tegen de pathogene VC.  
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Eerder werd aangetoond dat een geringe dosis mnn9 gisten/of glucan partikels Artemia bescherming 

bood tegen VC in een gnotobiotische kweektest. Blijkbaar kan een hogere dosis en/of hogere 

beschikbaarheid van β-glucanen en/of chitine aanwezig in mnn9 een doorslaggevende rol spelen in 

de bescherming. Deze studie (Hoofdstuk V) toonde aan dat deze componenten bescherming boden 

tegen VC enkel wanneer ze werden toegediend ruim voor de besmetting (8 tot 48h). Verder had de 

vermeende immunostimulant geen curatief effect.  Hoewel enkele studies beargumenteren dat β-

glucanen of andere immunostimulantia een snelle immuunreactie veroorzaken tegen pathogenen is 

er weinig eensluidend bewijs voor deze hypothese. Er wordt vermeld dat β-glucaan niet alleen het 

haemocytisch effect beïnvloed maar ook de proliferatie en mogelijks ook de synthese of 

metabolisme van haemocyten, terwijl de responstijd varieert met het species, het 

ontwikkelingsstadium en het gebruikte product. Daarom kan er gesteld worden dat β-glucanen in de 

mnn9 gistmutant meer geschikt zijn dan pure β-glucanen en dat mnn6 sneller het immuunsysteem 

induceert dan pure glucanen.  

In deze studie (Hoofdstuk V) werd aangetoond dat een korte blootstelling van Artemia aan mnn9 

(priming) geen bescherming opleverde tegen het pathogeen langer dan 2 dagen. Hoewel de reden 

niet gekend is werd aangetoond dat priming van het immuunsysteem van ongewervelden bepaald 

wordt door verschillende factoren waaronder de specificiteit en hoeveelheid van het product alsook 

van het geteste organisme. 

Immunostimulantia worden geacht een positief effect te sorteren op het immuunsysteem en de 

weerbaarheid van aquatische organismen. Er heerst echter nog veel onduidelijkheid over deze 

producten, vooral voor ongewervelden. Daarom werd in een laatste reeks experimenten (Hoofdstuk 

VI) de anti-ontstekingswerking van enkele vermeende immunostimulantia geverifieerd in een 

gnotobiotisch Artemia kweeksysteem. Zes commerciële β-glucanen (5 gebaseerd op bakkergist, 1 

op Laminarine) en chitine partikels werden getest. De resultaten toonden aan dat enkel β-glucaan 

(Sigma- en Zymosan totale bescherming tegen VC boden, terwijl MacroGard slechts beperkte 

bescherming bood. Artemia die niet werden gesupplementeerd met glucanen toonden hoge sterfte.  
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Het gnotobiotische kweeksysteem voor Artemia bied een uitstekende mogelijkheid om het 

mechanisme te bestuderen in de interactie tussen gastheer en bacterie en om alternatieve 

behandelingen te evalueren hetgeen hopelijk bijdraagt tot de ontwikkeling van afdoende 

oplossingen voor ziektebestrijding in aquacultuur.   
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