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Superconducting screening on different length scales in  
high-quality bulk MgB2 superconductor 

 
 
J. Horvat, S. Soltanian, A. V. Pan and X. L. Wang 
Institute for Superconducting and Electronic Materials, University of Wollongong, NSW 
2522, Australia 
 
Field dependence of irreversible magnetic moment ∆m was obtained from magnetic hysteresis 
loops for a number of bulk MgB2 superconductors. The field dependence of ∆m exhibits 
inflections at two characteristic fields, Ht and Hi (Ht < Hi). These two fields increase linearly 
with the logarithm of the sample size, each extrapolating to zero at a different characteristic 
sample size. Magneto-optical, optical and scanning electron microscopic examinations show 
that these extrapolated sample sizes match the sizes of the main microscopic features of the 
samples. The inflection at Ht

 and the sample size dependence of ∆m and Ht are associated 
with voids scattered through the samples, which are observed for all bulk MgB2 samples. The 
voids encircle cells of MgB2 material of tens of micrometers in size. The cells are connected 
by narrow bridges. The superconducting currents screening the whole of the sample have to 
cross these bridges and they are concentrated in them. This promotes additional 
superconducting screening around the cells, where the current density would otherwise be 
smaller than the critical current density Jc. The field dependence of the currents pertinent to 
each of the screenings follows the stretched exponential law. However, these two screening 
currents decrease with H with a different rate, and Ht is a field of the transition from the 
dominance of one of the currents in ∆m to the other. The screening that gives predominant 
contribution to ∆m for H < Ht is confined to inside the cells, circulating on ~10 µm-scale. For 
Ht < H < Hi, the dominant screening currents circulate the whole of the sample, percolating 
through the bridges. If Jc is calculated from the critical state model assuming only the 
screening around the whole of the sample, erroneous value of Jc and its functional dependence 
on the field are obtained. This also leads to an artifact of the sample size-dependent Jc. 
However, because these two stretched exponential contributions decrease with H with a 
different rate, they can be separated for most of the samples. The magnetically obtained Jc for 
Ht < H < Hi is defined by the screening currents percolating around the whole of the sample, 
and it is in good agreement with the transport Jc. There is also a third tier of superconducting 
screening on a micrometer scale, inside the cells. It is associated with clusters of 
superconducting crystals that make up the cells. However, its contribution to ∆m is negligible 
for H < Hi, which are the fields of technological interest. 
 
 
 
Keywords: MgB2 bulk and wires, stretched exponential, superconducting screening, 
microstructure, critical current, current percolation 

 
 

PACS Numbers: 74.70.Ad, 74.25.Sv  
 



 2 

I. INTRODUCTION 
 

High quality MgB2 pellets and wires exhibit large critical current densities, which are 
difficult to measure in a transport method. Because of this, most of the claims of achieving a 
high critical current density (Jc) and of improvement of vortex pinning are based on magnetic 
measurements. However, we will show that the value of magnetically obtained Jc and its field 
dependence vary with the sample size and can be quite erroneous without proper analysis of 
the experimental data. 

 
One of the main technological advantages of high-quality bulk MgB2 is that its 

superconducting crystals are connected well. This results in the absence of weak links1, which 
are the main weakness of high-temperature superconductors. For high-temperature 
superconductors, there is a sharp decrease of Jc at low magnetic fields due to the breaking 
down of the weak links in the field and decoupling of the superconducting grains2, 3. The 
external magnetic field (H) penetrates between the grains where the weak links are decoupled. 
 

Because of the absence of the weak links, this abrupt decrease of Jc in low fields does not 
occur in the bulk MgB2. Therefore, the field dependence of Jc should be entirely defined by 
the vortex pinning and suppression of the superconducting order parameter as the field 
approaches Hc2. However, magnetic measurements of Jc for bulk MgB2 showed that the zero-
field Jc, Jc0, strongly decreased with the sample volume4 for samples smaller than about 10 
mm3. For larger samples, Jc0 did not change significantly with the sample volume anymore. 
These results indicated additional superconducting screening, on the length-scale smaller than 
the sample. The relative contribution of each of the screenings to the measured irreversible 
magnetic moment ∆m depended on the size of the sample when it approached the length-scale 
of the additional screening. Both of the screenings contributed to ∆m, resulting in an artificial 
increase of magnetic Jc0 as the sample size approached the length-scale of the additional 
screening. The relative contribution of each of the screenings to ∆m did not change with the 
sample size for large samples.  
 

This paper shows that the superconducting screening at different length scales has a strong 
influence on the field dependence of ∆m. The rate of decrease of ∆m with field is shown to be 
different for each of the screenings. Characteristic fields are identified, representing the 
transition from the dominance of one of the screenings in d(∆m)/dH to the dominance of the 
other. The sample size dependence of these fields gives the value of the characteristic length-
scales for different superconducting screenings. The field dependence of ∆m for each of the 
screening follows the stretched exponential law 5, 6, and the measured ∆m is the sum of these 
contributions. This implies that the field dependence of Jc, obtained from ∆m using the critical 
state model, is an artifact of different contributions to the measured ∆m. The magnetically 
obtained Jc can be much larger than the transport Jc because of this artifact. Therefore, any 
conclusions derived from the magnetic measurements of MgB2 should be treated with 
caution, despite that there is no weak links in high-quality MgB2.  This is of great concern, 
because the efforts to develop MgB2 in the form of pellets and wires usually rely on magnetic 
measurements. 
 
 
II. EXPERIMENTAL PROCEDURE 
 

A number of different MgB2 samples were measured, from our first MgB2 pellets, 7 to the 
best MgB2/Fe wires 8. The pellets were prepared by mixing fine powders of magnesium and 
boron, with slight surplus of Mg. This mixture was pressed into pellets, which were sealed 
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into iron tube and sintered in flowing high-purity argon. The sintering temperatures were 
between 700 and 850 °C and sintering time ranged from 1 minute to 1 hour. The iron-
sheathed wires were prepared by first filling the powder into iron tubes, which were drawn to 
desired diameter, sealed into another iron tube, and then sintered in flowing high purity argon. 
The exact preparation procedure for these samples was described elsewhere 9, 10. The iron 
sheath was removed before the magnetic measurements, to avoid its contribution to the signal 
and magnetic interaction between the iron and MgB2 

11.  
 
Another group of samples was prepared by hot isostatic pressing (HIP). The mixture of 

magnesium and boron powders was pressed at 150 MPa at 850 °C for 1 hour, in argon 
atmosphere. The density of the obtained MgB2 pellet was 1.9 g/cm3, as compared to ≈1.5 
g/cm3 for the pellets obtained at atmospheric pressure. The HIP-ed samples were used for 
accurate measurements of the effect of the sample size on the field dependence of ∆m. They 
were cut into a rectangular shape, with magnetic field applied along the longest sample 
dimension. Each of the three sample dimensions were subsequently decreased by 20% after 
each of the measurements. In this way, the proportions of the sample remained the same for 
all the measurements, avoiding possible effects of the sample shape on the results. Exact 
dimensions of these samples can be found in Ref 4.  

 
All the measured samples had critical temperature of about 38-39K, as obtained from the 

measurements of magnetic susceptibility. XRD analysis showed they consist of MgB2, with 
less than 10 % of MgO.  

 
The field dependence of ∆m was obtained from the magnetic hysteresis loops. Most of 

them were measured by a Quantum Design PPMS. Some of the loops were measured by an 
Oxford Instruments VSM, with vibration amplitude 1.5 mm and frequency 45 Hz. The results 
obtained from both of the instruments were consistent with each other. The sweep rate of 
magnetic field was 50 Oe/s. 

 
The transport Jc was measured for iron sheathed wires by pulsed current method. This 

method was necessary to avoid heating of the sample, because the critical currents were of 
several hundreds of amperes. The duration of the current-pulse was about 1 ms. The detailed 
description of the experimental set-up can be found elsewhere 11.  

 
Magneto-optical imaging was performed by employing an epitaxial ferrite-garnet 

indicator film, with in-plane magnetization 12. The sample was placed in a cryostat with 
optical window and magnetic pattern produced on the indicator film by magnetic fields above 
the sample surface was observed by a microscope. Magnetic field was produced by a solenoid 
with an iron core.  

 
III. EXPERIMENTAL RESULTS 
 

The field dependence of Jc for MgB2 is usually obtained from the measurements of 
magnetic hysteresis loops 7, using the critical state model 13, 14. Jc is in this model proportional 
to the measured irreversible magnetic moment ∆m, which is the height of the magnetic 
hysteresis loop, and inversely proportional to the sample size. A typical field dependence of 
∆m per unit volume of an MgB2 sample is shown in Fig. 1, with log-lin scales. The same 
qualitative behavior was observed for HIP-ed samples, MgB2 cores of Fe-sheathed wires, 
MgB2 pellets, as well as for the MgB2 powders with the particle size ranging from a few µm 
to tens of µm.  Three different regimes in the field dependence of ∆m can be identified in 
Fig.1, with transitions between them at fields about H = 1 T and 4 T. The step at 4 T is the 
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more obvious transition in Fig.1, because the logarithmic scale was used for Jc. However, the 
inflection at 1T occurs at ≈ 40% of the value of ∆m for H = 0. Therefore, the regime for H < 
1T accounts for ≈ 60% of the decrease of ∆m with H. 

 
These three regimes can be much easier observed in the plots of the field dependence of 

the relative decrease of ∆m with H, -d(∆m)/dH * (∆m)-1, which can be re-written as -
d(ln(∆m))/dH. This is shown in Fig. 2 for the same sample as in Fig.1. The transition fields at 
1 and 4 T are identified as the peaks in Fig.2 and they are denoted as Ht and Hi, respectively. 
For all measured samples, the data of -d(ln(∆m))/dH vs. H are linearized  in log-log plots for 
H < Ht (Fig.2). The gradient of log[-d(ln(∆m))/dH] vs. log[H] is denoted as n-1. The value of 
n depends on the sample quality, temperature and sample size. There is a wide transition for 
Ht < H < Hi. For some of the samples, however, the experimental points are linearized in this 
field range, as well (inset to Fig.2). Finally, the second peak occurs at the fields around H = 
Hi, followed by a large data scatter for larger fields (experimental points with large data 
scattering for H > Hi were deleted in Fig.2).  

 
The values of Ht and Hi are dependent on the sample quality and temperature. What is 

more interesting, they show a strong dependence on the sample size. This points to a 
connection between these fields and the dependence of Jc0 on the sample size 4, where Jc0 was 
calculated from ∆m and the size of the sample. Fig. 3 shows the temperature dependence of Ht 
for the HIP-ed MgB2 sample, whose volume was decreased after the measurements were 
performed at all the temperatures. Apparently, Ht decreased with the size of the sample for all 
temperatures. Fig. 3 also shows the temperature dependence of Ht for commercial 325 mesh 
MgB2 powder (particles smaller than 44 µm). The values of Ht were much smaller than for the 
HIP-ed samples. The commercial powder was then ground, to obtain particles smaller than 
about 20 µm. The value of Ht was substantially decreased by grinding and was not observed 
any more at 30K. The values of Ht and Hi were generally higher for samples of better quality. 
For example, the MgB2 wires with magnetic Jc0 of 112 and 356 kA/cm2 had Ht at 20K of 0.4 
and 0.8 T, respectively.   

 
The change of the value of Ht with the sample volume, V, is shown in Fig 4 for the HIP-ed 

MgB2. These samples were of rectangular shape, with the field aligned along the largest 
dimension. Their exact dimensions are given in Reference 4. Ht is proportional to ln(V) for all 
the temperatures: Ht = A + B ln(V). The values of A were 6.90, 4.95 and 2.19 T and the values 
of B were 0.35, 0.25 and 0.11 T, for T = 10, 20, and 30 K, respectively. For calculating these 
values, the sample volume was in mm3 and field in Tesla. The experimental data in Fig.4 can 
be extrapolated to Ht = 0, which is a characteristic volume below which the inflection in ∆m 
vs. H at H = Ht does not occur any more. The data for all three temperatures seem to 
extrapolate to the same volume at Ht = 0, which we denote by V0. From this, it follows for V > 
V0: 

 

o
t V

V
BH ln=  ,         (1) 

 
where V0 = e-B/A ≈ 3 x 10-9 m3. The sample thickness (its smallest dimension) extrapolates to 
c0 ≈ 60 µm at V = V0.  

 
The variation of Ht with sample size in Fig. 4 was obtained with changing all three 

dimensions of the sample simultaneously. To test whether Ht is affected by the change of only 
one dimension of the sample, another set of measurements was performed for two groups of 
cylindrical samples. In the group D, the diameter of the sample was changed and its length 
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was kept at 3.91mm 4. In the group Z, the length of the sample was changed, whereas the 
diameter was kept at 1.54 mm. The field was aligned along the cylindrical z-axis for both the 
groups. These samples were the MgB2 cores extracted from an iron-sheathed wire, but they 
had Jc0 comparable to the HIP-ed samples. The HIP-ed samples were of much higher hardness 
than the samples from the wire and they were too hard to file down to the small diameter 
without breaking. Fig. 5 shows that Ht changes logarithmically with the sample length. It 
extrapolates to Ht = 0 at the sample length Z0 ≈ 20 µm. Inset to Fig. 5 shows a logarithmic 
change of Ht with the sample diameter, as well. Ht extrapolates to zero at the sample diameter 
D0 ≈ 70 µm. Therefore, Ht extrapolates to zero at a characteristic length that is of the same 
order of magnitude, regardless of which of the dimensions is changed (Figs. 4 and 5).  

 
Fig. 6 shows the change of Hi with the sample volume for the HIP-ed samples. Hi also 

changes with V logarithmically, and it extrapolates to zero at the volume of the order of 10-6 
mm3. This corresponds to the smallest dimension of the sample of the order of a micrometer.  
Therefore, the characteristic length associated with the sample size dependence of Hi is one 
order of magnitude smaller than the characteristic length associated with Ht. It is worth 
mentioning that the irreversibility field is usually defined by a small value of Jc, of the order 
of 100 A/cm2. This field is for MgB2 at the step in the plot of magnetically determined field 
dependence of Jc (Fig. 1) 8, 9, very close to Hi. Apparently, the irreversibility field was also 
reported to change with the sample size 4. 

 
The characteristic lengths associated with the transitions in the field dependence of ∆m at 

Ht and Hi indicate on the existence of superconducting screenings contributing to ∆m that 
circulate on these two length-scales, in addition to the screening around the whole of the 
sample. This screening is expected to be seen in the magneto-optical image (MOI) of the 
sample. MOI for HIP-ed rectangular samples showed a typical roof-type field profile as the 
field increased, corresponding to the overall field penetration into the sample (Fig. 7). The 
zig-zag lines are magnetic domain walls of the indicator film that are formed above the largest 
field gradients of the sample. On the top of this was a finer detail, showing an arrangement of 
round structures reminiscent of voids, scattered across the sample. The diameter of the round 
structures was about 20 µm. These structures formed irregularly shaped cells between them, 
of the average size of about 35 µm. The resolution of the MOI set-up did not allow us to 
check if there is another tier of voids in these cells, on a ten times smaller length-scale.  

 
 The optical image of the sample is shown in Fig. 8. A pattern of dark voids is an apparent 

feature of this image. The voids surround the cells of MgB2, exhibiting a golden shine. 
Comparing the MOI with the optical image of the sample, it is apparent that the round 
structures observed in MOI correspond to the voids in the sample, surrounding the volume of 
shiny high-quality MgB2 cells (Fig.8). These cells are connected via narrow bridges. The size 
of the MgB2 cells is of the same order as the characteristic screening lengths c0, Z0 and D0. A 
similar structure of the voids was observed for all other samples, too, including the pellets and 
iron sheathed wires. However, the shape and density of the voids were sample dependent.  

 
IV. DISCUSSION 
 

The existence of superconducting screening on the length-scales smaller than the sample 
size, which results in the inflexions in the field dependence of ∆m, is reminiscent of the weak 
links in high-temperature superconductors. For the high-temperature superconductors, the 
screening on the smaller length-scale occurs as the weak links cease conducting current at 
elevated fields and superconducting screening is confined to disconnected superconducting 
grains. However, the current transport through weak links is negligible in high-quality MgB2 
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1. Superconducting grains of MgB2 are well connected, giving high value of Jc and much 
weaker decrease of Jc with the field than for the high-temperature superconductors. Therefore, 
such decoupling of the grains cannot occur in MgB2.  

 
A. Model with two superconducting screening lengths 
 

The clues for understanding the inflexions in the field dependence of ∆m can be found in 
Figs. 7 and 8. The only anomalies in MOI on the length-scale corresponding to the inflexion 
at Ht (i. e. of the order of c0) are the round structures, which can be identified as the voids in 
the optical image (Fig. 8). The voids surround the cells of MgB2, connected by narrow 
bridges. Superconducting screening on the length-scale of the whole sample can occur only if 
the screening currents flow through these bridges between the bulkier cells. The screening 
currents are concentrated in the bridges and the current density in them is larger than in the 
cells. The maximum persistent current density in the bridges is Jc. Because of this, the current 
density inside the cells that belongs to the overall screening of the sample is smaller than Jc. 
This allows for additional screening on the length-scale of the cells between the voids, so that 
the net current density in the cells also becomes Jc (Fig.9). The current density for the 
screening of the cells will be denoted as Jcc  and the average current density of the overall 
screening of the sample as Jcs. For simplicity, we assume that the cells consist of a 
homogeneous material and neglect the screening on an even smaller length-scale, associated 
with Hi (Figs. 1, 2 and 6).  

 
The values and field dependence of Jcc and Jcs depend on the structure and size of the 

voids and Jc of the MgB2 matrix. However, they are also affected by an interaction between 
Jcc and Jcs. Namely, Jcc is either added or subtracted from Jcs in the cells, depending on the 
position in the cells (Fig.9). The spatial distribution and values of Jcc and Jcs are such that the 
total superconducting screening of the sample, including the overall screening and screening 
of the cells, is the most efficient. Obtaining the values and spatial distribution of Jcc and Jcs 

theoretically is a complex problem. However, the values and field dependence of Jcc and Jcs 
can be obtained from experiment, using a simple model of superconducting screening on two 
different length-scales. 

 
The field dependence of the measured ∆m can be modeled in the same way as the 

dependence of the zero-field ∆m on the sample size 4, 15. For a cylindrical sample with 
diameter D and volume V 15: 

 
[ ] 3/2)()()( VHDJHafJHm cscc +=∆ ,      (2) 

 
where a and f are the size of the cells and the filling factor for the cells, respectively. For the 
samples of different shape, the only difference is the proportionality factor outside the square 
bracket. The contribution of the screening on the length-scales smaller than the cells is 
neglected for simplicity. This contribution would have an even smaller pre-factor than af in 
Eq. (2). Neglecting the third screening is justified experimentally by the small value of ∆m for 
H > Hi (Fig. 2), where the screening on the smallest length-scale is expected to dominate in 
∆m.  
 

The form of the field dependence of Jcc and Jcs can be determined from Fig.2.  The 
experimental points are linearized in Fig. 2 for H < Ht. For higher fields, there is a non-linear 
transition. However, linear parts were sometimes clearly observed for Ht < H < Hi (inset to 
Fig. 2), depending on the sample and its size. The fact that there is a transition between two 
different field dependencies of ∆m at Ht, which in turn depends on the sample size, implies 
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that one of the contributions in Eq. (2) dominates the field dependence of ∆m below Ht and the 
other one above Ht.  Therefore, the fit of experimental points in each of the field ranges, away 
from the transition at Ht, should reveal the functional dependence of each of the screenings in 
Eq. (2) on the field. The linear part in Fig. 2 gives: -log[-d(ln(∆m))/dH] = Ω + Ξ log[H]. The 
general form for the field dependence of ∆m in this field range is obtained from this 
expression as: ∆m = const.*exp(-(H/Hi)

n).  This function is commonly called the stretched 
exponential, or Kohlrausch, Willi ams and Watts’ function 5, 6. We choose a general 
expression for ∆m as: 
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without assigning Jcs to a particular contribution in Eq. (3). The pre-factors α and β contain 
the size of the cells and sample in Eq. (2). We stress that the dominance in Fig. 2 of one of the 
screening currents signifies that they decrease with the field much faster than the other 
currents and not that they necessarily give a dominant contribution into ∆m. However, the 
field dependence of ∆m for each of the screening currents is still proportional to the length-
scale on which they flow, i.e. a and D. 
 

The selection of Eq. (3) for fitting the field dependence of ∆m was first tested by choosing 
arbitrary values of the fitting parameters. Plotting  -d(ln(∆m))/dH vs. H with log-log scales, a 
peak similar  to the one in Fig. 2 was obtained. Lowering the value of β and keeping all other 
parameters in Eq. (3) constant, the peak shifted to lower fields, which is consistent with the 
observed size dependence of Ht (Figs. 4 and 5).  

 
The fitting of the field dependence of ∆m with Eq. (3) was performed by first obtaining 

the values of n1 and H1 from the measured data. The gradient of the linear part of 
experimental points in Fig. 2 for H < Ht is equal to n1-1. Approximate value for H1 was 
obtained by neglecting the second part of Eq. (3). Then, log[-d(ln(∆m))/dH] ≈ log[ n1/H1

n1] + 
(n1-1)log[H]. For H = 1 T in Fig. 2, -d(ln(∆m))/dH ≈ n1/H1

n1.  The value of -d(ln(∆m))/dH  at 
1 T was obtained by extrapolating the linear part in Fig.2 to 1T, which gave us the value of H1 
using the known value of n1. This resulted in a very good fit for the field dependence of ∆m 
for H < Ht, with α being the only arbitrary fitting parameter. Therefore, the first part of Eq. 
(3) was chosen to fit the data for H < Ht. 

 
The values of H2 and n2 could only be obtained for several samples, where the 

experimental data were linear for fields Ht < H < Hi (inset to Fig.2). This was only possible 
where a combination of the parameters in Eq. (3) resulted in sharp transitions at Ht and Hi, so 
that the transitions did not distort the linearity of the experimental points between Ht and Hi. 
For these samples, it was observed that the value of H2 was close to 2.5 T and it was always 
larger than H1. The value of n2 was about 2.6. These were the starting values for fitting the 
field dependence of ∆m with Eq. (3) for the other samples. They were refined, so that the fit 
closely matched the experimental data. Adding the second part of the field dependence of ∆m 
into the fitting expression, Eq. (3), required a significant change in the value of α. However, 
the values of n1 and H1 required only a small change.  

 
The fit of the field dependence ∆m/V for the HIP-ed sample with V = 0.23 mm2 is shown 

by the solid line in Fig. 10. Apparently, Eq. (3) describes the field dependence of ∆m very 
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well. Equally good fitting was obtained for all the samples measured. The experimentally 
observed logarithmic dependence of Ht on the sample volume (Eq. (1) and Figs. 4 and 5) was 
also obtained from the fits using Eq. (3). Dashed and dotted lines show separately the first and 
second part of Eq. (3), respectively. The value of the zero-field ∆m for the fit with the first 
part of Eq. (3) is about two times higher than for the second part. However, the former 
exhibits much stronger field dependence than the latter. Because of this, ∆m at elevated fields  
(H >> Ht) is contributed only by the screening described by the second part of Eq. (3) (dotted 
line in Fig. 10).  On the other hand, the second part of Eq. (3) is almost constant for H < Ht. 
Therefore, the field dependence of ∆m for H < Ht is defined only by the screening described 
by the first part of Eq. (3). Nevertheless, both parts of Eq. (3) give a significant contribution 
to ∆m for H < Ht. The relative contribution of each of the parts into ∆m depends on the 
sample size when the sample size approaches the value of c0, whereas it does not change any 
more with the sample size for much larger samples. This is in agreement with the reported 
artificial sample size dependence of magnetically determined Jc0 for small samples, if only the 
overall screening of the sample was assumed 4.  

 
B. Stretched exponential field dependence of Jc 

 
An interesting outcome of our measurements is that the field dependence of Jc is described 

by the stretched exponential function, instead of the commonly used exponential function. 
The exponential function would give a constant value in Fig. 2, which is by far different from 
the experimental data. Further, Ht is the field for which d2[ln(∆m)]/dH2 = 0. This condition 
gives a complicated equation which for the exponential function (i.e. n1 = n2 = 1) becomes: 
H/H1 = H/H2. The only non-trivial solution for this equation is H1 = H2, which is simply a 
single exponential function that does not exhibit the transition observed experimentally at Ht 
(Figs. 1 and 2). Further, simulations with the combination of two exponential functions with 
H1 ≠ H2 could not produce the peak at Ht in Fig. 2.  

 
In our fitting of ∆m vs. H, the values of both H1 and H2 changed with the sample size.  For 

the HIP-ed samples, the values of H1 and H2 at 20K were in the range of 1 - 1.9 T and 2.2 – 
2.8 T, respectively. The values of n1 and n2 were in the range of 2.2 – 3.2 and 2.4 – 2.9, 
respectively.  

 
It is not clear why exactly the field dependence of ∆m follows the stretched exponential 

function. This function is commonly used for describing the structural relaxation of glasses 16, 

17, 18 and supercooled fluids 19, 20, relaxation of remanent magnetization of spin glasses 21, 22, 23, 
dielectric relaxation 6, and many others. In addition to its significance as a common 
phenomenological relaxation function, it was found theoretically that the relaxation of a 
fractal system with closed configuration space is necessarily of the stretched exponential type 
24. Our measurements, however, show that the field dependence of ∆m for MgB2 is a stretched 
exponential. The same was found earlier for both, transport and magnetic Jc of high-
temperature superconductors 25. Both, MgB2 and high-temperature superconducting samples 
have porous structure, with percolative current flow through them. Further, the value of the 
parameters ni and Hi in Eq. (3) depends on the sample size as it approaches the size of the 
basic screening cells in that sample. This would all suggest that the stretched exponential 
form of ∆m is associated with the percolative current flow in the sample. 
 
C. Transport and magnetic Jc 

 
It is important to distinguish the part of the Eq. (3) that corresponds to Jcs. This is because 

Jcs is the average critical current that screens the whole of the sample, which is equivalent to 
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the transport critical current. The field dependence of ∆m, obtained from the transport 
measurements of Jc and back-calculated using the critical state model, is shown in Fig.10 
(solid symbols) for comparison with the magnetic measurements. The transport measurements 
were obtained for iron-sheathed wires, with the field parallel to the wire. It was shown that the 
effect of the iron sheath on the results is then minimized 26. Considering that the 
measurements for two different samples are compared, there is a remarkable agreement 
between the ∆m obtained from transport measurements and the fit with the second part of Eq. 
(3). Therefore, the field dependence of Jcs is defined by β, H2 and n2 in Eq. (3). Further, the 
first part of Eq. (3) cannot describe the transport measurements because it decreases very 
strongly with field for H > Ht, in contrast to the transport measurements that still give large 
values of Jc for these fields. Consequently, the field dependence of Jcc is described by α, H1 
and n1 in Eq. (3). 
 

All the results of this paper show that the field dependence of Jc cannot be obtained by 
simply applying the critical state model to ∆m obtained from magnetic measurements. Due to 
the inhomogeneous structure of MgB2, ∆m is contributed to by superconducting screenings on 
different length-scales and each of them has different stretched exponential field dependence. 
Because of different values of ni and Hi in Eq. (3), each of the screening gives a dominant 
contribution to the field dependence of ∆m in a particular band of the fields. At low fields, the 
largest contribution comes from the screening currents around the cells between the voids in 
all types of samples, including the pellets, powders, and iron-sheathed wires. In addition, the 
contribution of these screening currents becomes even more dominant for H < Ht as the 
sample size becomes smaller than a few millimeters. Because these currents only flow on the 
length-scales smaller than 0.1 mm, Jc calculated from ∆m and the length scale of the size of 
the sample will be artificially several times higher than the transport Jc for H < Ht (Fig.10).  

 
For Ht < H < Hi, the screening of the whole of the sample gives dominant contribution to 

∆m (Fig.10). The contribution from the cells, and additional third contribution that dominates 
for H > Hi and was neglected in the above discussion, is insignificant in this field range, away 
from Ht and Hi. The  ∆m for Ht < H < Hi can be used in the critical state model to calculate Jc, 
which is equivalent to the transport Jc.  

 
The transition at Hi indicates the existence of a third tier of superconducting screening. 

The sample size dependence of Hi is qualitatively the same as for Ht (Fig. 6), indicating the 
same underlying principle for both the transitions ( Eqs. (2) and (3)). However, Fig. 6 shows 
the length-scale of the screening for H > Hi is of the order of a micrometer. MOI set-up could 
not provide such a high resolution, however SEM examination provided the necessary clues. 
Fig. 11 a) shows the structure of the voids of the HIP-ed sample, also observed with optical 
microscope (Fig.8). Further magnification (Fig. 11 b)) reveals a grain-like structure of the size 
of about a micrometer. These are the clusters of superconducting crystals, which had already 
been identified as the cause of the step in the field dependence of ∆m 8. The size of these 
clusters depends on the preparation procedure. Their size was about 200 µm in our first 
samples 8, however they were of the order of micrometer in our better quality samples. TEM 
work on high-quality MgB2/Fe wires showed that there were actually two tiers of sub-
micrometer clusters,  of the size of tens of nanometers and almost a micrometer27.  

 
Our results (Figs. 6 and 11) imply that the micrometer-size clusters are responsible for the 

screening at H > Hi in the HIP-ed samples. This is in agreement with our earlier results on 
poorer quality bulk MgB2 

8. Unfortunately, the field dependence of ∆m for the screening on 
the micrometer-scale could not be obtained accurately, due to the small value of ∆m at these 
fields. In rare measurements with low noise, it seemed to be following the exponential law for 
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some samples, yet for others (Fig.1) it was more like the stretched exponential. Because these 
measurements are on the resolution limit of the instrument, it is difficult to distinguish 
between them reliably. The TEM images in Ref. 27 would imply that there is another 
screening, on the ten-nanometer scale. However, the detection of this screening was not 
possible, because the screening on such a small length-scale would give ∆m that is even 
smaller than for the screening on the micrometer scale. 

 
D. Other models implying the sample size dependence of ∆m 

 
Measurements of magnetic relaxation for bulk MgB2 samples of different thickness28 

showed that the pinning potential increases with the sample thickness for thin samples and it 
becomes constant for samples thicker than about 1 mm. This was explained by a model based 
on vortex rigidity. Because increased pinning potential is associated with larger Hirr, this 
model might also explain our results on the sample size dependence of Hi (Fig. 6), as the 
value of Hirr is close to Hi. In the proposed model 28, the pinning potential increases with the 
sample thickness for samples thinner than the collective pinning length in the direction 
parallel to the field 29: Lc 

��� ε2ξ2/γ)1/3. Here, ε = [Φ0/(4πλ)]2 and γ, ξ, λ and Φ0  are the 
disorder parameter, coherence length, London penetration depth and magnetic flux quantum, 
respectively. It was assumed that Lc ≈ 1mm. For samples thicker than Lc, the pinning potential 
was proposed to increase no further with the sample thickness, because the vortex lines break 
up into segments of the size Lc. However, using 30 ξ ≈ 10-6 cm, λ ≈ 10-5 cm and γ ≈ 1, the 
estimated values of Lc are orders of magnitude smaller than 1 millimeter. Because Hi in our 
measurements increases for sample size of up to a few millimeters (Fig.6), it is unlikely that 
this model can explain our results. Further, the pinning potential does not change with the 
lateral dimensions of the sample in their model 28, i. e dimensions perpendicular to the field. 
However, the field dependence of ∆m in our measurements changes with either lateral or 
longitudinal dimension of the sample (Fig. 5).  

 
The value of Jc is defined by an arbitrary value of the electrical field (E) produced 

between the voltage contacts in transport measurements, or by the sweep rate of magnetic 
field in the magnetic measurements. The latter is equivalent to the former, because for a 
cylindrical sample with field along its z-axis, for example, E = - D/2*dB/dt. Therefore, E is 
proportional to the sample dimension perpendicular to the field (i.e. D), which implies that Jc 
depends on this dimension, as well 31. Because of this, ∆m should also depend on D, which 
could explain our results in the inset to Fig.5. However, the field dependence of ∆m is then 
not supposed to depend on the length of the sample, which is in contrast to the observed 
dependence of Ht on the sample length (Fig.5). Therefore, the change of E with the sample 
size cannot be the mechanism for the observed field and sample size dependence of ∆m. In 
addition, the observed transitions at Ht and Hi cannot be described by this mechanism. 
Further, the activation energy for magnetic vortices in MgB2 is too high to allow observation 
of this effect. Namely, E increases abruptly at J = Jc and changing the definition of Jc to 
another value of E would alter the value of Jc very little. 

 
Contribution of both, bulk and Bean-Livingstone surface pinning into ∆m was also put 

forward to explain the size dependence of ∆m at low fields 31. This concept could in principle 
explain the occurrence of the transition in the field dependence of ∆m at Ht. Namely, the 
surface pinning should be effective only for 32 H < κHc1/lnκ, where κ = λ/ξ  and Hc1 is the 
lower critical field. At higher fields, the bulk pinning would dominate. However, using κ ≈ 10  
and Hc1 ≈ 20 - 50 mT at 20K 30, 33, this transition is expected to occur at about 0.2 T at 20K. 
Experimentally, however, the transition occurs at about 2T and it depends logarithmically on 
the sample size (Fig. 4). Additionally, a characteristic length-scale associated with Ht is about 
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50 µm (Figs. 4 and 5). However surface pinning is associated with length-scales of the order 
of 10 nm (i.e. λ and ξ). Therefore, if the field dependence of ∆m were dominated by the 
surface pinning for low fields, Ht would extrapolate to zero at a three orders of magnitude 
lower length-scale. Most importantly, apparent irregularities in the structure of bulk MgB2 
will result in rough sample surface on the length-scale of λ 27. This provides numerous gates 
for the vortex entry34, rendering the surface pinning ineffective for bulk MgB2 samples.  

 
The effect of geometrical barriers on our results was irrelevant, because the HIP-ed 

samples had the same geometrical proportions. Further, the field was always directed along 
the longest dimension of the samples, additionally minimizing effect of any geometrical 
barriers. The only exception were the short samples in Fig. 5, where the sample diameter was 
constant and its length was decreased for each subsequent measurement. However, even these 
measurements gave the logarithmic dependence of Ht on the sample size (Figs. 4 and 5), the 
same as for the other samples.  

 
In contrast to these models, the existence of the transitions at Ht and Hi and their 

dependence on the sample size are naturally explained by the current percolating between the 
cells of MgB2 in the sample (Fig. 8). The field dependence of ∆m on the sample length may 
seem a bit unusual, but the percolation of the current can account for this, too.  With the field 
along the cylindrical z-axis of the sample, the z-component of the local screening current will 
not be zero, as in a homogeneous medium. Because of the voids in the samples, the current 
screening the whole of the sample has to cross the bridges between the cells, which make it 
locally flow in the direction of the cylindrical z-axis. This z-component of the current will 
flow in the negative z-direction through other bridges, so that the net current in z-direction is 
zero. However, the local z-component of the current contributes to the overall screening of the 
sample, enabling additional links between the superconducting cells. As the sample length 
approaches the size of the cells, some of these links are destroyed, which changes the relative 
contribution of Jcs

 and Jcc to ∆m, and thus affecting the values of Ht. The importance of the 
local z-component of the current is also supported by transport measurements on MgB2 wires 
26, where the field dependence of Jc was the same for the field parallel and perpendicular to 
the overall transport current. 

 
V. CONCLUSIONS 

 
The magnetic field dependence of ∆m was shown to consist of a sum of at least two 

stretched exponential functions. The experiments showed that each of the stretched 
exponential contributions is associated with a superconducting screening on a particular 
length-scale. Each of these functions gives a dominant contribution to d(∆m)/dH  in a 
particular field range. This occurs because the stretched exponential function changes little in 
low fields, and fast at high fields, and because each of the screenings has different parameters 
ni and Hi in the stretched exponential form (Eq. (3)). The fields at which the transitions from 
the dominance of one of the functions to the other occur (Ht and Hi) are identified as 
inflection points in the field dependence of ∆m in log-log plots (Fig.1). For H < Ht, the 
screening on the length-scale of tens of micrometers determines the field dependence of ∆m. 
For Ht < H < Hi, the field dependence of ∆m is dominated by the screening on the length-scale 
of the sample, i.e. a millimeter. These screening currents correspond to the transport critical 
currents. For still higher fields, the screening on the length-scale of the order of 1 µm 
determines the field dependence of ∆m.  

These tiers of screening on different length-scales occur because of the inhomogeneous 
microstructure of bulk MgB2, consisting of an array of voids. The voids encircle cells of 
MgB2 material, of the size of ~ 10 µm, connected by narrow bridges. The currents screening 



 12 

the whole of the sample percolate through the bridges, defining the field dependence of ∆m 
for Ht < H < Hi. Because the currents screening the whole of the sample are concentrated in 
the bridges, additional screening occurs around the cells of MgB2 between the voids (Fig.9). 
This screening on ~ 10 µm scale defines the field dependence of ∆m for H < Ht. The cells 
themselves consist of ~ 1 µm large clusters of MgB2 crystals. The superconducting screening 
around these clusters on ~ 1 µm scale (i.e. inside the cells) is associated with the field 
dependence of ∆m for H > Hi. The existence of the clusters inside the cells implies that the 
screening around the cells on ~10 µm scale (H < Ht) is also of a percolative nature. The 
percolation of the current is probably responsible for the stretched exponential field 
dependence of ∆m, instead of the generally expected exponential dependence. The stretched 
exponential field dependence of ∆m was also obtained for high-temperature superconductors 
25, where the current transport is also of a percolative nature. 

 
Such a complex structure of superconducting screening is a cause of errors when 

calculating Jc by simply applying the critical state model to the measured ∆m. The field 
dependence of thus obtained Jc will be actually a contribution of different types of screening, 
each of them defining the field dependence of Jc in different field ranges. The value of Jc will 
also be wrong: the screenings occur at different length scales, whereas the critical state model 
assumes that they circulate the whole of the sample. Further,  Jc will artificially depend on the 
sample size as it approaches the size of the screening islands in the sample. The best one can 
do is to separate the ∆m for Ht < H < Hi and calculate Jc using the size of the whole sample. 
The value of this Jc, and its field dependence, are in good agreement with the transport Jc.  
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Figure 1:  Field dependence of ∆m for a bulk MgB2 sample at 20K.  

 
Figure 2: Field dependence of the relative decrease of ∆m with field, 1/∆m*d(∆m)/dH, for the 
same sample as in Fig.1 at 20K. 
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Figure 3: Temperature dependence of the transition field Ht for several different samples: 
HIP-ed MgB2 with volume of 12 mm3 (open squares) and 0.23 mm3 (solid squares), 
commercial MgB2 powder with particle size less than 44 µm (solid circles), which was 
subsequently ground to obtain particles smaller than 20 µm (open circles).  

 
Figure 4: The dependence of the transition field Ht on the volume of the HIP-ed MgB2 
sample, for T = 10, 20 and 30 K. Ht extrapolates to zero at V = V0 for all three temperatures. 
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Figure 5: The dependence of the transition field Ht on the sample length, for the core of an 
iron-sheathed MgB2 wire. The diameter of the core was constant, 1.54 mm. Inset: The 
dependence of Ht on the diameter of the core for an iron-sheathed wire, where the length of 
the core was kept constant, at 3.91 mm. The temperature was 20K. 

 
Figure 6: The dependence of the transition field Hi on the volume of the HIP-ed MgB2, for T 
= 10, 20 and 30 K.   
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Figure 7: Magnetooptical image  for a HIP-ed sample at 20 K. The bar represents 0.2 mm. 
 
 

 
 
 
 
 
Figure 8: Optical image for the same HIP-ed sample as in Fig.7. The bar represents 0.2 mm. 
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Figure 9:  Schematic drawing of the screening currents in the sample. Jcs and Jcc are drawn by 
solid and dotted lines, respectively. The screening currents on 1 µm length-scale are 
represented by the dots. The shaded ellipses are the voids in the sample.  
 

 
 
 
Figure 10: The field dependence of ∆m/V for the HIP-ed sample with volume of 0.23 mm3, at 
20 K. Solid line is the fit using Eq. (3), with: α = 912 emu/cm3, H1=1.17 T, n1 = 2.32,  β = 375 
emu/cm3, H2 = 2.41 T and n2 = 2.9. Solid and dotted lines show separately the first and second 
part of the Eq. (3), respectively. Solid squares are ∆m/V calculated in the critical state model, 
with values of Jc obtained from the transport measurements, for an iron sheathed MgB2 wire 
at 20K.  
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Figure 11: Scanning Electron Microscope image of a HIP-ed MgB2 sample at two different 
magnifications. The sample was broken off a larger pellet, without polishing, to reveal the 
finer structure of clusters in the cells. 
 
 
 
a) 

 
 
b) 
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