197 research outputs found

    Optimizing both catalyst preparation and catalytic behaviour for the oxidative dehydrogenation of ethane of Ni-Sn-O catalysts

    Full text link
    [EN] Bulk Ni-Sn-O catalysts have been synthesized, tested in the oxidative dehydrogenation of ethane and characterized by several physicochemical techniques. The catalysts have been prepared by evaporation of the corresponding salts using several additives in the synthesis gel, i.e. ammonium hydroxide, nitric acid, glyoxylic acid or oxalic acid, in the synthesis gel. The catalysts were finally calcined at 500 degrees C in air. Important changes in the catalytic behaviour have been observed depending on the additive. In fact, an important improvement in the catalytic performance is observed especially when some additives, such as glyoxylic or oxalic acid, are used. Thus the productivity to ethylene multiplies by 6 compared to the reference Ni-Sn-O catalyst if appropriate templates are used, and this is the result of an improvement in both the catalytic activity and the selectivity to ethylene. This improved performance has been explained in terms of the decrease of the crystallite size (and the increase in the surface area of catalyst) as well as the modification of the lattice parameter of nickel oxide.The authors would like to acknowledge the DGICYT in Spain (CTQ2015-68951-C3-1-R and CTQ2012-37925-C03-2) for financial support. We also thank the University of Valencia and SCSIE-UV for assistanceSolsona Espriu, BE.; López Nieto, JM.; Agouram, S.; Soriano Rodríguez, MD.; Dejoz, A.; Vázquez, MI.; Concepción Heydorn, P. (2016). Optimizing both catalyst preparation and catalytic behaviour for the oxidative dehydrogenation of ethane of Ni-Sn-O catalysts. Topics in Catalysis. 59(17-18):1564-1572. https://doi.org/10.1007/s11244-016-0674-zS156415725917-18Heracleous E, Lee AF, Wilson K, Lemonidou AA (2005) J Catal 231:159–171Heracleous E, Lemonidou AA (2006) J Catal 237:162–174Savova B, Loridant S, Filkova D, Millet JMM (2010) Appl Catal A 390:148–157Heracleous E, Lemonidou AA (2010) J Catal 270:67–75Solsona B, Nieto JML, Concepcion P, Dejoz A, Ivars F, Vazquez MI (2011) J Catal 280:28–39Skoufa Z, Heracleous E, Lemonidou AA (2012) Catal Today 192:169–176Zhu H, Ould-Chikh S, Anjum DH, Sun M, Biausque G, Basset JM, Caps V (2012) J Catal 285:292–303Skoufa Z, Heracleous E, Lemonidou AA (2012) Chem Eng Sci 84:48–56Zhu H, Rosenfeld DC, Anjum DH, Caps V, Basset JM (2015) ChemSusChem 8:1254–1263Heracleous E, Lemonidou AA (2015) J Catal 322:118–129Solsona B, Concepcion P, Demicol B, Hernandez S, Delgado JJ, Calvino JJ, Nieto JML (2012) J Catal 295:104–114Nieto JML, Solsona B, Grasselli RK, Concepción P (2014) Top Catal 57:1248–1255Popescu I, Skoufa Z, Heracleous E, Lemonidou AA, Marcu IC (2015) PCCP 17:8138–8147Zhang X, Gong Y, Yu G, Xie Y (2002) J Mol Catal A 180:293–298Popescu I, Skoufa Z, Heracleous E, Lemonidou A, Marcu I-C (2015) Phys Chem Chem Phys 17:8138–8147Nakamura KI, Miyake T, Konishi T, Suzuki T (2006) J Mol Catal A 260:144–151Solsona B, Dejoz AM, Vazquez MI, Ivars F, Nieto JML (2009) Top Catal 52:751–757Bortolozzi JP, Gutierrez LB, Ulla MA (2013) Appl Catal A 452:179–188Takeguchi T, Furukawa S, Inoue M (2001) J Catal 202:14–24Richardson JT, Turk B, Twigg MV (1996) Appl Catal 148:97–112Biju V, Khadar MA (2002) J Nanopart Res 4:247–253Van Veenendaal MA, Sawatzky GA (1993) Phys Rev Lett 70:2459–2462Vedrine JC, Hollinger G, Duc TM (1978) J Phys Chem 82:1515–1520Salagre P, Fierro JLG, Medina F, Sueiras JE (1996) J Mol Catal A 106:125–13

    Using radium isotopes to characterize water ages and coastal mixing rates: A sensitivity analysis

    Get PDF
    ISI Document Delivery No.: 893TE Times Cited: 4 Cited Reference Count: 78 Cited References: Abraham DM, 2003, BIOL BULL-US, V205, P246, DOI 10.2307/1543277 Arega F, 2008, J HYDRO-ENVIRON RES, V2, P99, DOI 10.1016/j.jher.2008.07.003 Basu AR, 2001, SCIENCE, V293, P1470, DOI 10.1126/science.1060524 Beck AJ, 2007, MAR CHEM, V106, P419, DOI 10.1016/j.marchem.2007.03.008 Boehm AB, 2006, CONT SHELF RES, V26, P269, DOI 10.1016/j.csr.2005.11.008 Boehm AB, 2004, ENVIRON SCI TECHNOL, V38, P3558, DOI 10.1021/es035385a Breier JA, 2009, LIMNOL OCEANOGR, V54, P1964, DOI 10.4319/lo.2009.54.6.1964 Brooks DA, 1999, ESTUAR COAST SHELF S, V49, P647, DOI 10.1006/ecss.1999.0544 Burnett WC, 2008, ESTUAR COAST SHELF S, V76, P501, DOI 10.1016/j.ecss.2007.07.027 Burnett WC, 2006, SCI TOTAL ENVIRON, V367, P498, DOI 10.1016/j.scitotenv.2006.05.009 Charette MA, 2007, LIMNOL OCEANOGR, V52, P230 Charette MA, 2007, DEEP-SEA RES PT II, V54, P1989, DOI 10.1016/j.dsr2.2007.06.003 Charette MA, 2003, MAR CHEM, V84, P113, DOI 10.1016/j.marchem.2003.07.001 Charette MA, 2001, LIMNOL OCEANOGR, V46, P465 Colbert SL, 2007, CONT SHELF RES, V27, P1477, DOI 10.1016/j.csr.2007.01.003 Crotwell AM, 2003, AQUAT GEOCHEM, V9, P191, DOI 10.1023/B:AQUA.0000022954.89019.c9 de Sieyes NR, 2008, LIMNOL OCEANOGR, V53, P1434, DOI 10.4319/lo.2008.53.4.1434 Dulaiova H, 2008, MAR CHEM, V109, P395, DOI 10.1016/j.marchem.2007.09.001 Dulaiova H, 2006, CONT SHELF RES, V26, P1971, DOI 10.1016/j.csr.2006.07.011 GALLAGHER B, 1980, PAC SCI, V34, P301 Garcia-Orellana J, 2010, J ENVIRON RADIOACTIV, V101, P582, DOI 10.1016/j.jenvrad.2009.12.005 Garcia-Solsona E, 2008, MAR CHEM, V109, P292, DOI 10.1016/j.marchem.2008.02.007 Garcia-Solsona E, 2010, BIOGEOSCIENCES, V7, P2625, DOI 10.5194/bg-7-2625-2010 Garcia-Solsona E, 2008, MAR CHEM, V109, P198, DOI 10.1016/j.marchem.2007.11.006 Garcia-Solsona E, 2010, BIOGEOCHEMISTRY, V97, P211, DOI 10.1007/s10533-009-9368-y Godoy JM, 2006, J BRAZIL CHEM SOC, V17, P730, DOI 10.1590/S0103-50532006000400014 Gomes F. C., 2009, RADIOPROTECTION, V44, P237, DOI [10.1051/radiopro/20095047, DOI 10.1051/RADIOPRO/20095047] Gonneea ME, 2008, MAR CHEM, V109, P250, DOI 10.1016/j.marchem.2007.12.002 Hancock GJ, 1996, EARTH PLANET SC LETT, V138, P145, DOI 10.1016/0012-821X(95)00218-2 Hougham AL, 2007, MAR CHEM, V105, P194, DOI 10.1016/j.marchem.2007.01.013 Hwang DW, 2005, MAR CHEM, V96, P61, DOI 10.1016/j.marchem.2004.11.002 Kim G, 2008, MAR CHEM, V109, P307, DOI 10.1016/j.marchem.2007.07.002 Kim G, 2005, EARTH PLANET SC LETT, V237, P156, DOI 10.1016/j.epsl.2005.06.011 Knee KL, 2008, ESTUAR COAST, V31, P607, DOI 10.1007/s12237-008-9055-6 Knee KL, 2010, LIMNOL OCEANOGR, V55, P1105, DOI 10.4319/lo.2010.55.3.1105 Krest JM, 2000, GLOBAL BIOGEOCHEM CY, V14, P167, DOI 10.1029/1999GB001197 LEE DR, 1977, LIMNOL OCEANOGR, V22, P140 Lee YW, 2009, SCI TOTAL ENVIRON, V407, P3181, DOI 10.1016/j.scitotenv.2008.04.013 Li CY, 2011, J MARINE SYST, V86, P28, DOI 10.1016/j.jmarsys.2011.01.003 LI YH, 1979, EARTH PLANET SC LETT, V43, P343, DOI 10.1016/0012-821X(79)90089-X LONGUETHIGGINS MS, 1983, P ROY SOC LOND A MAT, V390, P283, DOI 10.1098/rspa.1983.0132 Loveless AM, 2008, J HYDROL, V351, P203, DOI 10.1016/j.jhydrol.2007.12.010 Monsen NE, 2002, LIMNOL OCEANOGR, V47, P1545 Montlucon D, 2001, ENVIRON SCI TECHNOL, V35, P480, DOI 10.1021/es9914442 Moore W. S., 2000, J GEOPHYS RES, V105, P117, DOI DOI 10.1029/1999JC000289 Moore WS, 2006, CONT SHELF RES, V26, P852, DOI 10.1016/j.csr.2005.12.004 Moore WS, 2008, ESTUAR COAST SHELF S, V76, P512, DOI 10.1016/j.ecss.2007.07.042 Moore WS, 2006, J GEOPHYS RES-OCEANS, V111, DOI 10.1029/2005JC003041 Moore WS, 2000, CONT SHELF RES, V20, P1993, DOI 10.1016/S0278-4343(00)00054-6 Moore WS, 1997, EARTH PLANET SC LETT, V150, P141, DOI 10.1016/S0012-821X(97)00083-6 MOORE WS, 1984, NUCL INSTRUM METH A, V223, P407, DOI 10.1016/0167-5087(84)90683-5 OKUBO A, 1976, DEEP-SEA RES, V23, P1213, DOI 10.1016/0011-7471(76)90897-4 OKUBO A, 1971, DEEP-SEA RES, V18, P789, DOI 10.1016/0011-7471(71)90046-5 Paytan A, 2006, LIMNOL OCEANOGR, V51, P343 Peterson RN, 2009, LIMNOL OCEANOGR, V54, P890, DOI 10.4319/lo.2009.54.3.0890 Peterson RN, 2008, CONT SHELF RES, V28, P2700, DOI 10.1016/j.csr.2008.09.002 Portnoy JW, 1998, WATER RESOUR RES, V34, P3095, DOI 10.1029/98WR02167 Rama, 1996, GEOCHIM COSMOCHIM AC, V60, P4645 Rapaglia J, 2010, J ENVIRON RADIOACTIV, V101, P571, DOI 10.1016/j.jenvrad.2009.08.010 Rasmussen L. L., 2003, THESIS MIT Robinson C, 2007, ADV WATER RESOUR, V30, P851, DOI 10.1016/j.advwatres.2006.07.006 Santos IR, 2008, J HYDROL, V353, P275, DOI 10.1016/j.jhydrol.2008.02.010 Scopel CO, 2006, J GREAT LAKES RES, V32, P543, DOI 10.3394/0380-1330(2006)32[543:IONWDA]2.0.CO;2 SHAW RD, 1989, LIMNOL OCEANOGR, V34, P1343 Shellenbarger GG, 2006, LIMNOL OCEANOGR, V51, P1876 Slomp CP, 2004, J HYDROL, V295, P64, DOI 10.1016/j.jhydrol.2004.02.018 Standley LJ, 2008, ENVIRON TOXICOL CHEM, V27, P2457, DOI 10.1897/07-604.1 STOMMEL H, 1949, J MAR RES, V8, P199 Street JH, 2008, MAR CHEM, V109, P355, DOI 10.1016/j.marchem.2007.08.009 Swarzenski PW, 2009, ESTUAR COAST SHELF S, V83, P77, DOI 10.1016/j.ecss.2009.03.027 Swarzenski PW, 2007, MAR CHEM, V104, P69, DOI 10.1016/j.marchem.2006.08.001 Swarzenski PW, 2006, MAR CHEM, V101, P248, DOI 10.1016/j.marchem.2006.03.007 Swearman J. W., 2006, PAPERS SUMMER UNDERG, P51 Taniguchi M, 2003, BIOGEOCHEMISTRY, V66, P35, DOI 10.1023/B:BIOG.0000006090.25949.8d Taylor J. R., 1997, INTRO ERROR ANAL, P160 Turner IL, 1997, J COASTAL RES, V13, P46 Weinstein Y., 2006, RADIOACT ENV, V8, P360, DOI DOI 10.1016/S1569-4860(05)08029-0 Windom HL, 2006, MAR CHEM, V102, P252, DOI 10.1016/j.marchem.2006.06.016 Knee, Karen L. Garcia-Solsona, Ester Garcia-Orellana, Jordi Boehm, Alexandria B. Paytan, Adina 4 AMER SOC LIMNOLOGY OCEANOGRAPHY WACO LIMNOL OCEANOGR-METHNumerous studies have used naturally occurring Ra isotopes (Ra-223, Ra-224, Ra-226, and Ra-228, with half-lives of 11.4 d, 3.7 d, 1600 y, and 5.8 y, respectively) to quantify water mass ages, coastal ocean mixing rates, and submarine groundwater discharge (SGD). Using Monte Carlo models, this study investigated how uncertainties in Ra isotope activities and the derived activity ratios (AR) arising from analytical uncertainty and natural variability affect the uncertainty associated with Ra-derived water ages and eddy diffusion coefficients, both of which can be used to calculate SGD. Analytical uncertainties associated with Ra-224, Ra-226, and Ra-228 activities were reported in most published studies to be less than 10% of sample activity; those reported for Ra-223 ranged from 7% to 40%. Relative uncertainty related to natural variability-estimated from the variability in Ra-223 and Ra-224 activities of replicate field samples-ranged from 15% to 50% and was similar for Ra-223 activity, Ra-224 activity, and the Ra-224/Ra-223 AR. Our analysis revealed that AR-based water ages shorter than 3-5 d often have relative uncertainties greater than 100%, potentially limiting their utility. Uncertainties in eddy diffusion coefficients estimated based on cross-shore gradients in short-lived Ra isotope activity were greater when fewer points were used to determine the linear trend, when the coefficient of determination (R-2) was low, and when Ra-224, rather than Ra-223, was used. By exploring the uncertainties associated with Ra-derived water ages and eddy diffusion coefficients, this study will enable researchers to apply these methods more effectively and to reduce uncertainty

    Support effects on NiO-based catalysts for the oxidative dehydrogenation (ODH) of ethane

    Full text link
    [EN] We report on the effect of NiO-support interactions on the chemical nature of Ni species in a series of supported NiO catalysts for the ODH of ethane. SiO2, TiO2-anatase, a high surface area TiO2 and a porous clay hetero-structure (PCH) with TiO2 and SiO2 pillars were used as supports, which led to a selectivity to ethylene in the range 30-90% over supported NiO catalysts. The catalysts were characterized by means of XRD, N-2-Adsorption, H-2-TPR, XPS and in situ (under H-2 reductive atmosphere) and ex situ XAS spectroscopy. The catalytic performance of supported materials is discussed in terms of their reducibility and specific reduction kinetics, but also taking into account the specific chemical nature of Ni species on each catalyst. The influence of the particle size and the presence of Ni and O vacancies on the catalytic performance in the ODH of ethane is inferred.Authors would like to thank the DGICYT in Spain CTQ2015-68951-C3-1-R, CTQ2015-68951-C3-3-R, CTQ2012-37925-C03-2 and ENE2017-88818-C2-1-R. Also authors want to acknowledge the ALBA Synchrotron Light Source (Project ID: 2015021258 at CLAESS beamline). Authors from ITQ thank Project SEV-2016-0683 for financial support. D. D. also thanks MINECO and Severo Ochoa Excellence Program for his fellowship (SVP-2014-068669). Authors from UV thank the University of Valencia (UV-INV-AE16-484416 project) and MINECO (MAT2017-84118-C2-1-R project) for funding.Delgado-Muñoz, D.; Sanchís, R.; Cecilia, JA.; Rodríguez-Castellón, E.; Caballero, A.; Solsona, B.; López Nieto, JM. (2019). Support effects on NiO-based catalysts for the oxidative dehydrogenation (ODH) of ethane. Catalysis Today. 333:10-16. https://doi.org/10.1016/j.cattod.2018.07.010S101633

    NiO diluted in high surface area TiO2 as efficient catalysts for the oxidative dehydrogenation of ethane

    Full text link
    [EN] Catalysts consisting of NiO diluted in high surface area TiO2 can be as efficient in the oxidative dehydrogenation of ethane as the most selective NiO-promoted catalysts reported previously in the literature. By selecting the titania matrix and the NiO loading, yields to ethylene over 40% have been obtained. In the present article, three different titanium oxides (TiO2) have been employed as supports or diluters of nickel oxide and have been tested in the oxidative dehydrogenation of ethane to ethylene. All TiO2 used present anatase as the main crystalline phase and different surface areas of 11,55 and 85 m(2) g(-1). It has been observed that by selecting an appropriate nickel loading and the titanium oxide extremely high selectivity towards ethylene can be obtained. Thus, nickel oxide supported on TiO2 with high surface areas (i.e. 55 and 85 m(2) g(-1)) have resulted to give the best catalytic performance although the optimal nickel loading is different for each case. The optimal catalyst has been obtained for NiO-loadings up to 5-10 theoretical monolayers regardless of the TiO2 employed. Free TiO2 is inactive whereas unsupported NiO is active and unselective (forming mainly carbon dioxide) and, therefore, unmodified NiO particles have to be avoided in order to obtain the optimal catalytic performance. The use of low surface area titania (11 m(2) g(-1)) have led to the lowest selectivity to olefin due to the presence of an excess of free NiO particles. (C) 2017 Elsevier B.V. All rights reserved.The authors would like to acknowledge the DGICYT in Spain CTQ2012-37925-C03-2, CTQ2015-68951-C3-1-R, CTQ2015-68951-C3-3-R and SEV-2012-0267 Projects for financial support. D.D. also thanks Severo Ochoa Excellence fellowship (SVP-2014-068669). We also thank the University of Valencia (UV-INV-AE-16-484416 project) and SCSIE-UV for assistanceSanchis, R.; Delgado-Muñoz, D.; Agouram, S.; Soriano Rodríguez, MD.; Vázquez, MI.; Rodriguez-Castellon, E.; Solsona, B.... (2017). NiO diluted in high surface area TiO2 as efficient catalysts for the oxidative dehydrogenation of ethane. Applied Catalysis A General. 536:18-26. https://doi.org/10.1016/j.apcata.2017.02.012S182653

    Chemical, Structural, and Morphological Changes of a MoVTeNb Catalyst during Oxidative Dehydrogenation of Ethane

    Full text link
    MoVTeNb mixed oxide, a highly active and selective catalyst for the oxidative dehydrogenation of ethane to produce ethylene, exhibits the so-called M1 and M2 crystalline phases. The thermal stability of the MoVTeNb catalytic system was assessed under varying reaction conditions; to this end, the catalyst was exposed to several reaction temperatures spanning from 440 to 550 °C. Both the pristine and spent materials were analyzed by several characterization techniques. The catalyst was stable below 500 °C; a reaction temperature of ≥500 °C brings about the removal of tellurium from the intercalated framework channels of the M1 crystalline phase. Rietveld refinement of X-ray diffraction patterns and microscopy results showed that the tellurium loss causes the progressive partial destruction of the M1 phase, thus decreasing the number of active sites and forming a MoO2 crystalline phase, which is inactive for this reaction. Raman spectroscopy confirmed the MoO2 phase development as a function of reaction temperature. From highresolution transmission electron microscopy and energy-dispersive X-ray spectroscopy analyses it was noticed that tellurium departure occurs preferentially from the end sides of the needlelike M1 crystals, across the [001] plane. Detailed analysis of a solid deposited at the reactor outlet showrf that it consisted mainly of metallic tellurium, suggesting that the tellurium detachment occurs via reduction of Te4+ to Te0 due to a combination of reaction temperature and feed composition. Thus, in order to sustain the catalytic performance exhibited by MoVTeNb mixed oxide, hot spots along the reactor bed should be avoided or controlled, maintaining the catalytic bed temperature below 500 °C.This work was financially supported by the Instituto Mexicano del Petroleo.Valente, JS.; Armendariz-Herrera, H.; Quintana-Solorzano, R.; Del Angel, P.; Nava, N.; Masso Ramírez, A.; López Nieto, JM. (2014). Chemical, Structural, and Morphological Changes of a MoVTeNb Catalyst during Oxidative Dehydrogenation of Ethane. ACS Catalysis. 4:1292-1301. doi:10.1021/cs500143jS12921301
    corecore