361 research outputs found

    Comment on "Creating artificial magnetic fields for cold atoms by photon-assisted tunneling" by Kolovsky A.R

    Get PDF
    We comment briefly on the scheme proposed in EPL 93, 20003 (2011) to produce synthetic gauge fields by means of photon-assisted tunneling.Comment: 2 pages, EPL forma

    Conductances in normal and normal-superconductor structures

    Full text link
    We study theoretically electronic transport through a normal metal-- superconductor (NS) interface and show that more than one conductance may be defined, depending on the pair of chemical potentials whose difference one chooses to relate linearly to the current. We argue that the situation is analogous to that found for purely normal transport, where different conductance formulae can be invoked. We revisit the problem of the "right" conductance formula in a simple language, and analyze its extension to the case of mesoscopic superconductivity. The well-known result that the standard conductance of a NS interface becomes 2 (in units of 2e2/h2e^2/h) in the transmissive limit, is viewed here in a different light. We show that it is not directly related to the presence of Andreev reflection, but rather to a particular choice of chemical potentials. This value of 2 is measurable because only one single-contact resistance is involved in a typical experimental setup, in contrast with the purely normal case, where two of them intervene. We introduce an alternative NS conductance that diverges in the transmissive limit due to the inability of Andreev reflection to generate a voltage drop. We illustrate numerically how different choices of chemical potential can yield widely differing I--V curves for a given NS interface.Comment: Minor changes have been introduced and several references have been added, 12 pages, submitted to special issue of ``Superlattices and Microstructures

    Generation of uniform synthetic magnetic fields by split driving of an optical lattice

    Get PDF
    We describe a method to generate a synthetic gauge potential for ultracold atoms held in an optical lattice. Our approach uses a time-periodic driving potential based on two quickly alternating signals to engineer the appropriate Aharonov-Bohm phases, and permits the simulation of a uniform tunable magnetic field. We explicitly demonstrate that our split driving scheme reproduces the behavior of a charged quantum particle in a magnetic field over the complete range of field strengths, and obtain the Hofstadter butterfly band-structure for the Floquet quasienergies at high fluxes.Comment: 5 pages, 3 eps figure

    Controlled generation of coherent matter-currents using a periodic driving field

    Get PDF
    We study the effect of a strong, oscillating driving field on the dynamics of ultracold bosons held in an optical lattice. Modeling the system as a Bose-Hubbard model, we show how the driving field can be used to produce and maintain a coherent atomic current by controlling the phase of the intersite tunneling processes. We investigate both the stroboscopic and time-averaged behavior using Floquet theory, and demonstrate that this procedure provides a stable and precise method of controlling coherent quantum systems.Comment: 4.1 pages, 4 eps figure

    Coherent ratchets in driven Bose-Einstein condensates

    Get PDF
    We study the response of a Bose-Einstein condensate to an unbiased periodic driving potential. By controlling the space and time symmetries of the driving we show how a directed current can be induced, producing a coherent quantum ratchet. Weak driving induces a regular behavior that is strongly governed by the interparticle interaction. Breaking both space and time symmetries is required to produce current flow. For strong driving the behavior becomes chaotic. The resulting effective irreversibility renders the space asymmetry sufficient to produce the ratchet effect, although the system is completely coherent.Comment: 5 pages, 4 eps figures. Minor changes, this version to be published in PR

    Comment on ``Phase and Phase Diffusion of a Split Bose-Einstein Condensate''

    Full text link
    Recently Javanainen and Wilkens [Phys. Rev. Lett. 78, 4675 (1997)] have analysed an experiment in which an interacting Bose condensate, after being allowed to form in a single potential well, is "cut" by splitting the well adiabatically with a very high potential barrier, and estimate the rate at which, following the cut, the two halves of the condensate lose the "memory" of their relative phase. We argue that, by neglecting the effect of interactions in the initial state before the separation, they have overestimated the rate of phase randomization by a numerical factor which grows with the interaction strength and with the slowness of the separation process.Comment: 2 pages, no figures, to appear in Phys. Rev. Let

    Variational approach to the excitonic phase transition in graphene

    Full text link
    We analyze the Coulomb interacting problem in undoped graphene layers by using an excitonic variational ansatz. By minimizing the energy, we derive a gap equation which reproduces and extends known results. We show that a full treatment of the exchange term, which includes the renormalization of the Fermi velocity, tends to suppress the phase transition by increasing the critical coupling at which the excitonic instability takes place.Comment: 4 page

    Feshbach-type resonances for two-particle scattering in graphene

    Full text link
    Two-particle scattering in graphene is a multichannel problem, where the energies of the identical or opposite-helicity channels lie in disjoint energy segments. Due to the absence of Galilean invariance, these segments depend on the total momentum QQ. The dispersion relations for the two opposite-helicity scattering channels are analogous to those of two one-dimensional tight-binding lattices with opposite dispersion relations, which are known to easily bind states at their edges. When an ss-wave separable interaction potential is assumed, those bound states reveal themselves as three Feshbach resonances in the identical-helicity channel. In the limit Q→0Q \rightarrow 0, one of the resonances survives and the opposite-helicity scattering amplitudes vanish.Comment: 8 pages, 2 figure
    • …
    corecore