15 research outputs found

    Novel Manufacturing Concepts for 12 GHz High Gradient Accelerating Structures

    No full text
    CLIC high gradient accelerating structures (AS) work-ing in X-band are made of copper ultra-high precision discs, requiring both milling and turning operations. Discs are then joint together by diffusion bonding. The rest of important technical systems, such as vacuum, cooling and manifolds, to house damping silicon carbide absorbers, are brazed to the bonded disc stack afterwards. This manufacturing technique has been successfully demonstrated but it is very challenging and needs an accurate assembly at every production step. Main issues concern vacuum-tightness, misalignment, deformations during different assembly operations, defects of braz-ing/bonding operations (gaps, a leak of brazing material) etc. Preparation and repairs are time and resource con-suming and increase the final price of the accelerating structure. This paper describes the novel manufacturing concepts for 12 GHz high gradient AS and focuses on new joining techniques as electron beam welding or brazing, new engineering solutions, as rectangular cells or structures made of halves are being considered

    ProBE: Proton Boosting Extension for Imaging and Therapy

    No full text
    The ProBE linac aims at accelerating protons from a particle therapy cyclotron to the c.330 MeV required for proton tomography. To obtain the c. 55 MV/m gradients required to achieve 100 MeV gain in a suitably short distance, we propose the use of a high-gradient S-band side-coupled standing-wave structure. In this paper we discuss the progress toward the testing of the prototype at the S-box facility at CERN

    Effect of Beam-Loading on the Breakdown Rate of High Gradient Accelerating Structures

    No full text
    The Compact Linear Collider (CLIC) is a study for a future room temperature electron-positron collider with a maximum center-of-mass energy of 3 TeV. To efficiently achieve such high energy, the project relies on a novel two beam acceleration concept and on high-gradient accelerating structures working at 100 MV/m. In order to meet the luminosity requirements, the break-down rate in these high-field structures has to be kept below 10 per billion. Such gradients and breakdown rates have been demonstrated by high-power RF testing several 12 GHz structures. However, the presence of beam-loading modifies the field distribution for the structure, such that a higher input power is needed in order to achieve the same accelerating gradient as the unloaded case. The potential impact on the break-down rate was never measured before. In this paper we present an experiment located at the CLIC Test Facility CTF3 recently proposed in order to quantify this effect, layout and hardware status, and discuss its first results

    Beam-Based Measurements of Long Range Transverse Wakefields in CLIC Main Linac Accelerating Structure

    No full text
    The baseline design of CLIC (Compact Linear Collider) uses X-band accelerating structures in the main linac. Every accelerating structure cell has four waveguides, terminated with individual RF loads, to damp the unwanted long-range transverse wakefields, in order to maintain beam stability in multi-bunch operation. In order to experimentally verify the calculated suppression of the wakefields, a prototype structure has been built and installed in FACET test facility at SLAC. The results of the measurements of the wakefields in the prototype structure by means of positron and electron bunches are presented

    Beam-based measurements of long-range transverse wakefields in the Compact Linear Collider main-linac accelerating structure

    No full text
    The baseline design of CLIC (Compact Linear Collider) uses X-band accelerating structures for its main linacs. In order to maintain beam stability in multibunch operation, long-range transverse wakefields must be suppressed by 2 orders of magnitude between successive bunches, which are separated in time by 0.5 ns. Such strong wakefield suppression is achieved by equipping every accelerating structure cell with four damping waveguides terminated with individual rf loads. A beam-based experiment to directly measure the effectiveness of this long-range transverse wakefield and benchmark simulations was made in the FACET test facility at SLAC using a prototype CLIC accelerating structure. The experiment showed good agreement with the simulations and a strong suppression of the wakefields with an unprecedented minimum resolution of 0.1  V/(pC mm m)

    Preserving Micrometre Tolerances Through the Assembly Process of an X-band Accelerating Structure

    No full text
    The CLIC structures are designed for operating at X-Band, 2π/32 \pi /3 traveling wave mode with a loaded 100 MV/m gradient. Mechanical tolerances, at the submicron level, are required to satisfy the RF design constraints and beam dynamics and are reachable using ultra-precision diamond machining. However, inherent to the manufacturing process, there is a deviation from the nominal specifications and as a result; incorrect cavity dimensions produce a less efficient linac. Moreover, the assembly process increase the difference from the original geometry. As part of a cost and manufacturability optimization of the structures for mass production, this study aims to identify a correlation between frequency deviations and geometrical errors of the individual discs of the accelerating structures caused by the production process. A sensitivity analysis has been carried out to determine the most critical parameters. Cell frequency deviations have been monitored by bead pull measurements before and after bonding. Several accelerating structure prototypes have been tested to determine our assumptions and to assess if the assembly process preserves the tight tolerances achieved by machining

    Beam-based measurements of long-range transverse wakefields in the Compact Linear Collider main-linac accelerating structure

    No full text
    The baseline design of CLIC (Compact Linear Collider) uses X-band accelerating structures for its main linacs. In order to maintain beam stability in multibunch operation, long-range transverse wakefields must be suppressed by 2 orders of magnitude between successive bunches, which are separated in time by 0.5 ns. Such strong wakefield suppression is achieved by equipping every accelerating structure cell with four damping waveguides terminated with individual rf loads. A beam-based experiment to directly measure the effectiveness of this long-range transverse wakefield and benchmark simulations was made in the FACET test facility at SLAC using a prototype CLIC accelerating structure. The experiment showed good agreement with the simulations and a strong suppression of the wakefields with an unprecedented minimum resolution of 0.1  V/(pC mm m)

    High-gradient Test Results from a CLIC Prototype Accelerating Structure: TD26CC

    No full text
    The CLIC study has progressively tested prototype accelerating structures which incorporate an ever increasing number of features which are needed for a final version installed in a linear collider. The most recent high power test made in the CERN X-band test stand, Xbox-1, is a of a CERN-built prototype which includes damping features but also compact input and output power couplers, which maximize the overall length to active gradient ratio of the structure. The structure’s high-gradient performance, 100 MV/m and low breakdown rate, matches previously tested structures validating both CERN fabrication and the compact coupler design
    corecore