46 research outputs found

    SARS-CoV-2 infects the human kidney and drives fibrosis in kidney organoids

    Get PDF
    Kidney failure is frequently observed during and after COVID-19, but it remains elusive whether this is a direct effect of the virus. Here, we report that SARS-CoV-2 directly infects kidney cells and is associated with increased tubule-interstitial kidney fibrosis in patient autopsy samples. To study direct effects of the virus on the kidney independent of systemic effects of COVID-19, we infected human-induced pluripotent stem-cell-derived kidney organoids with SARS-CoV-2. Single-cell RNA sequencing indicated injury and dedifferentiation of infected cells with activation of profibrotic signaling pathways. Importantly, SARS-CoV-2 infection also led to increased collagen 1 protein expression in organoids. A SARS-CoV-2 protease inhibitor was able to ameliorate the infection of kidney cells by SARS-CoV-2. Our results suggest that SARS-CoV-2 can directly infect kidney cells and induce cell injury with subsequent fibrosis. These data could explain both acute kidney injury in COVID-19 patients and the development of chronic kidney disease in long COVID

    Había una vez... una bacteria: proyecto editorial de la Universidad de Quilmes y Siglo XXI

    No full text

    Serum free cultured bone marrow mesenchymal stem cells as a platform to characterize the effects of specific molecules.

    Get PDF
    Human mesenchymal stem cells (hMSC) are easily isolated from the bone marrow by adherence to plastic surfaces. These cells show self-renewal capacity and multipotency. A unique feature of hMSC is their capacity to survive without serum. Under this condition hMSC neither proliferate nor differentiate but maintain their biological properties unaffected. Therefore, this should be a perfect platform to study the biological effects of defined molecules on these human stem cells. We show that hMSC treated for five days with retinoic acid (RA) in the absence of serum undergo several transcriptional changes causing an inhibition of ERK related pathways. We found that RA induces the loss of hMSC properties such as differentiation potential to either osteoblasts or adipocytes. We also found that RA inhibits cell cycle progression in the presence of proliferating signals such as epidermal growth factor (EGF) combined with basic fibroblast growth factor (bFGF). In the same manner, RA showed to cause a reduction in cell adhesion and cell migration. In contrast to these results, the addition of EGF+bFGF to serum free cultures was enough to upregulate ERK activity and induce hMSC proliferation and cell migration. Furthermore, the addition of these factors to differentiation specific media instead of serum was enough to induce either osteogenesis or adipogenesis. Altogether, our results show that hMSC's ability to survive without serum enables the identification of signaling factors and pathways that are involved in their stem cell biological characteristics without possible serum interferences

    A novel image-based high throughput screening assay discovers therapeutic candidates for adult polyglucosan body disease

    No full text
    Glycogen storage disorders (GSDs) are caused by excessive accumulation of glycogen. Some GSDs (Adult Polyglucosan Body Disease (APBD), Tarui and Lafora diseases) are caused by intracellular accumulation of insoluble inclusions, called polyglucosan bodies (PB), which are chiefly composed of malconstructed glycogen. We developed an APBD patient skin fibroblast cell-based assay for PB identification, where the bodies are identified as amylase-resistant periodic acid-Schiff's (PAS) stained structures, and quantified. We screened the DIVERSet-CL 10,084 compound library using this assay in high throughput format and discovered 11 dose-dependent and 8 non dose-dependent PB-reducing hits. ~70% of the hits appear to act through reducing glycogen synthase (GS) activity which can elongate glycogen chains and presumably promote PB generation. Some of these GS inhibiting hits were also computationally predicted to be similar to drugs interacting with the GS activator protein phosphatase 1 (PP1). Our work paves the way to discovering medications for the treatment of PB-involving GSD, which are extremely severe or fatal disorders

    RA and EGF+bFGF effects on Erk phosphorylation and on cell cycle progression.

    No full text
    <p>A: Western blot analysis of hMSC that were cultured for 5 days in either DMEM alone (DMEM) or in the presence of 0.5 µM RA (RA) or in the presence of 20 ng/ml EGF+ 5 ng/ml bFGF (EGF+bFGF), with or without the addition of 0.5 µM RA (EGF+bFGF+RA). As control, cells were cultured with 10%FBS (FBS), or with 0.5 µM RA in 10%FBS (FBS+RA). Whole-cell protein extracts from these differently treated cells were fractionated on a denaturating 12% polyacrylamide gel, transferred to nitrocellulose and detected with anti phosphorylated Erk antibody (pErk1/2). The membrane was stripped twice, one for detection with anti total Erk antibody (Erk1) and the second for β-actin antibody detection used as loading control. B: Densitometry analysis of A. The bars represent relative expression normalized to β-actin expression and referred to this ratio in DMEM. C–J: Cell cycle progression by FACS of hMSC that were cultured for 5 days with DMEM (C), 0.5 µM RA in DMEM (D), 20 ng/ml EGF (E), 5 ng/ml bFGF (F), 5 ng/ml bFGF +20 ng/ml EGF (G), or 5 ng/ml bFGF +20 ng/ml EGF +0.5 µM RA (H). In addition, hMSC were cultured for 2 days in DMEM (I) or in the presence of 0.5 µM RA (J) before replacement of the medium with 20 ng/ml EGF +5 ng/ml bFGF in DMEM for further 2 days. At the end of the experiment the cells were harvested by trypsinization, permeabilized and stained with propidium iodide to measure the DNA content by FACS.</p

    hMSC osteogenesis is inhibited by RA and enhanced by EGF+bFGF.

    No full text
    <p>hMSC were cultured for 21 days in osteoblasts differentiation medium without serum supplemented with 10% FBS (A), 10% FBS +0.5 µM RA (C), nothing (D), 0.5 µM RA (E), 20 ng/ml EGF +5 ng/ml bFGF (F), 20 ng/ml EGF +5 ng/ml bFGF +0.5 µM RA (G), or were cultured in DMEM supplemented with 10% FBS (B) or with 20 ng/ml EGF +5 ng/ml bFGF (H) (negative controls). To visualize differentiation osteoblasts were stained with alizarin red after fixation in 70% ethanol. Size bars = 100 µm.</p
    corecore